Compute $int_1^{infty} frac{1}{x^alpha + x^beta}dx$












2












$begingroup$


Given that $alpha,betainmathbb{R}$ such that the following integral converges I would like to find a closed form for: $$I_{alpha,beta} = int_1^{infty} frac{1}{x^alpha + x^beta}dx$$



I have found ways to represent the integral for cetain fixed cases, but is there a general representation of the integral for all $alpha$ and $beta$ ?



For example;
$$I_{1,beta} = int_1^{infty} frac{1}{x + x^{beta}}dx $$
$$= int_1^{infty} frac{1}{x(1+x^{beta-1})}$$
$$ = int_1^{infty} frac{1}{x} - frac{x^{beta - 2}}{1+x^{beta-1}}$$
$$=lnlvert xrvert-frac{1}{beta-1}cdotlnlvert 1+x^{beta-1}rvertbiggrrvert_1^{infty}$$
$$=frac{1}{beta - 1}cdotln(frac{x^{beta-1}}{1+x^{beta-1}})biggrrvert_1^{infty}$$
$$=frac{ln(1)-ln(1/2)}{beta-1}$$
$$=frac{ln2}{beta-1}$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
    $endgroup$
    – Jack D'Aurizio
    Jan 4 at 20:49
















2












$begingroup$


Given that $alpha,betainmathbb{R}$ such that the following integral converges I would like to find a closed form for: $$I_{alpha,beta} = int_1^{infty} frac{1}{x^alpha + x^beta}dx$$



I have found ways to represent the integral for cetain fixed cases, but is there a general representation of the integral for all $alpha$ and $beta$ ?



For example;
$$I_{1,beta} = int_1^{infty} frac{1}{x + x^{beta}}dx $$
$$= int_1^{infty} frac{1}{x(1+x^{beta-1})}$$
$$ = int_1^{infty} frac{1}{x} - frac{x^{beta - 2}}{1+x^{beta-1}}$$
$$=lnlvert xrvert-frac{1}{beta-1}cdotlnlvert 1+x^{beta-1}rvertbiggrrvert_1^{infty}$$
$$=frac{1}{beta - 1}cdotln(frac{x^{beta-1}}{1+x^{beta-1}})biggrrvert_1^{infty}$$
$$=frac{ln(1)-ln(1/2)}{beta-1}$$
$$=frac{ln2}{beta-1}$$










share|cite|improve this question









$endgroup$












  • $begingroup$
    Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
    $endgroup$
    – Jack D'Aurizio
    Jan 4 at 20:49














2












2








2


1



$begingroup$


Given that $alpha,betainmathbb{R}$ such that the following integral converges I would like to find a closed form for: $$I_{alpha,beta} = int_1^{infty} frac{1}{x^alpha + x^beta}dx$$



I have found ways to represent the integral for cetain fixed cases, but is there a general representation of the integral for all $alpha$ and $beta$ ?



For example;
$$I_{1,beta} = int_1^{infty} frac{1}{x + x^{beta}}dx $$
$$= int_1^{infty} frac{1}{x(1+x^{beta-1})}$$
$$ = int_1^{infty} frac{1}{x} - frac{x^{beta - 2}}{1+x^{beta-1}}$$
$$=lnlvert xrvert-frac{1}{beta-1}cdotlnlvert 1+x^{beta-1}rvertbiggrrvert_1^{infty}$$
$$=frac{1}{beta - 1}cdotln(frac{x^{beta-1}}{1+x^{beta-1}})biggrrvert_1^{infty}$$
$$=frac{ln(1)-ln(1/2)}{beta-1}$$
$$=frac{ln2}{beta-1}$$










share|cite|improve this question









$endgroup$




Given that $alpha,betainmathbb{R}$ such that the following integral converges I would like to find a closed form for: $$I_{alpha,beta} = int_1^{infty} frac{1}{x^alpha + x^beta}dx$$



I have found ways to represent the integral for cetain fixed cases, but is there a general representation of the integral for all $alpha$ and $beta$ ?



For example;
$$I_{1,beta} = int_1^{infty} frac{1}{x + x^{beta}}dx $$
$$= int_1^{infty} frac{1}{x(1+x^{beta-1})}$$
$$ = int_1^{infty} frac{1}{x} - frac{x^{beta - 2}}{1+x^{beta-1}}$$
$$=lnlvert xrvert-frac{1}{beta-1}cdotlnlvert 1+x^{beta-1}rvertbiggrrvert_1^{infty}$$
$$=frac{1}{beta - 1}cdotln(frac{x^{beta-1}}{1+x^{beta-1}})biggrrvert_1^{infty}$$
$$=frac{ln(1)-ln(1/2)}{beta-1}$$
$$=frac{ln2}{beta-1}$$







integration definite-integrals






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 4 at 20:37









Peter ForemanPeter Foreman

4177




4177












  • $begingroup$
    Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
    $endgroup$
    – Jack D'Aurizio
    Jan 4 at 20:49


















  • $begingroup$
    Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
    $endgroup$
    – Jack D'Aurizio
    Jan 4 at 20:49
















$begingroup$
Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
$endgroup$
– Jack D'Aurizio
Jan 4 at 20:49




$begingroup$
Are we assuming that $max(alpha,beta)-min(alpha,beta)$ is an integer?
$endgroup$
– Jack D'Aurizio
Jan 4 at 20:49










3 Answers
3






active

oldest

votes


















5












$begingroup$

Let's say $alpha > max(1,beta)$.
$$ frac{1}{x^alpha + x^beta} = frac{1}{x^alpha (1 + x^{beta-alpha})} =
sum_{k=0}^infty frac{(-1)^k x^{kbeta}}{x^{(1+k)alpha}}$$

and integrating term-by-term
$$I_{alpha,beta} = sum_{k=0}^infty frac{(-1)^{k}}{(1+k)alpha - k beta -1}
= frac{1}{beta-1}+frac{Psileft(frac{beta - 1}{2alpha-2beta}right) - Psileft(frac{alpha-1}{2alpha-2beta}right)}{2alpha-2beta}$$

where $Psi$ is the digamma function.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
    $endgroup$
    – Peter Foreman
    Jan 4 at 21:19










  • $begingroup$
    +1. How about for all $alpha$ in $mathbb{R}$?
    $endgroup$
    – Gustavo Louis G. Montańo
    Jan 4 at 21:36








  • 1




    $begingroup$
    @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
    $endgroup$
    – Peter Foreman
    Jan 4 at 21:42








  • 1




    $begingroup$
    This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
    $endgroup$
    – Peter Foreman
    Jan 4 at 22:04












  • $begingroup$
    Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
    $endgroup$
    – omegadot
    Jan 5 at 2:28



















2












$begingroup$

For $alpha neq beta $. Put $$t={1 over 1+ x^{beta - alpha}} .$$ Then you integral becomes



begin{align} {1 over beta -alpha } int_0^{1 over 2 } t^{alpha -1 over beta - alpha }(1-t)^{1-beta over beta -alpha} , dt,end{align}



which is ${1 over beta -alpha} B(1/2; {beta -1 over beta -alpha}, {1-alpha over beta -alpha}) $,



where $B(x;mu,nu)$ is the incomplete Beta function.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Assuming $beta > max (1,alpha)$. Enforcing a substitution of $x mapsto 1/x$ in the integral to begin with gives
    $$I_{alpha, beta} = int_0^1 frac{x^{beta - 2}}{1 + x^{beta -alpha}} , dx.$$
    Inside the interval of convergence, by exploiting the geometric series, namely
    $$frac{1}{1 + x^{beta - alpha}} = sum_{n = 0}^infty (-1)^n x^{n beta - n alpha}, qquad |x| < 1$$
    the integral can be rewritten as
    begin{align}
    I_{alpha, beta} &= sum_{n = 0}^infty (-1)^n int_0^1 x^{n beta - n alpha + beta - 2} , dx\
    &= sum_{n = 0}^infty (-1)^n frac{1}{n beta - n alpha + beta - 1}. qquad (*)
    end{align}

    To handle the infinity sum that arises we will make use of the following result (see Eq. (6) in the link)
    $$sum_{n = 0}^infty frac{(-1)^n}{z n + 1} = frac{1}{2z} left [psi left (frac{z + 1}{2z} right ) - psi left (frac{1}{2z} right ) right ]. qquad (**)$$
    Here $psi (x)$ is the digamma function.



    Rewriting the sum in ($*$) in the form of ($**$), namely
    $$I_{alpha, beta} = frac{1}{beta - 1} sum_{n = 0}^infty frac{(-1)^n}{left (dfrac{beta - alpha}{beta - 1} right ) n + 1},$$
    as we have $z = (beta - alpha)/(beta - 1)$, we finally arrive at
    $$I_{alpha, beta} = frac{1}{2beta - 2 alpha} left [psi left (frac{2 beta - alpha - 1}{2 beta - 2alpha} right ) - psi left (frac{beta - 1}{2 beta - 2alpha} right ) right ], qquad beta > max (1,alpha).$$






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062082%2fcompute-int-1-infty-frac1x-alpha-x-betadx%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      5












      $begingroup$

      Let's say $alpha > max(1,beta)$.
      $$ frac{1}{x^alpha + x^beta} = frac{1}{x^alpha (1 + x^{beta-alpha})} =
      sum_{k=0}^infty frac{(-1)^k x^{kbeta}}{x^{(1+k)alpha}}$$

      and integrating term-by-term
      $$I_{alpha,beta} = sum_{k=0}^infty frac{(-1)^{k}}{(1+k)alpha - k beta -1}
      = frac{1}{beta-1}+frac{Psileft(frac{beta - 1}{2alpha-2beta}right) - Psileft(frac{alpha-1}{2alpha-2beta}right)}{2alpha-2beta}$$

      where $Psi$ is the digamma function.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:19










      • $begingroup$
        +1. How about for all $alpha$ in $mathbb{R}$?
        $endgroup$
        – Gustavo Louis G. Montańo
        Jan 4 at 21:36








      • 1




        $begingroup$
        @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:42








      • 1




        $begingroup$
        This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
        $endgroup$
        – Peter Foreman
        Jan 4 at 22:04












      • $begingroup$
        Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
        $endgroup$
        – omegadot
        Jan 5 at 2:28
















      5












      $begingroup$

      Let's say $alpha > max(1,beta)$.
      $$ frac{1}{x^alpha + x^beta} = frac{1}{x^alpha (1 + x^{beta-alpha})} =
      sum_{k=0}^infty frac{(-1)^k x^{kbeta}}{x^{(1+k)alpha}}$$

      and integrating term-by-term
      $$I_{alpha,beta} = sum_{k=0}^infty frac{(-1)^{k}}{(1+k)alpha - k beta -1}
      = frac{1}{beta-1}+frac{Psileft(frac{beta - 1}{2alpha-2beta}right) - Psileft(frac{alpha-1}{2alpha-2beta}right)}{2alpha-2beta}$$

      where $Psi$ is the digamma function.






      share|cite|improve this answer











      $endgroup$













      • $begingroup$
        How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:19










      • $begingroup$
        +1. How about for all $alpha$ in $mathbb{R}$?
        $endgroup$
        – Gustavo Louis G. Montańo
        Jan 4 at 21:36








      • 1




        $begingroup$
        @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:42








      • 1




        $begingroup$
        This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
        $endgroup$
        – Peter Foreman
        Jan 4 at 22:04












      • $begingroup$
        Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
        $endgroup$
        – omegadot
        Jan 5 at 2:28














      5












      5








      5





      $begingroup$

      Let's say $alpha > max(1,beta)$.
      $$ frac{1}{x^alpha + x^beta} = frac{1}{x^alpha (1 + x^{beta-alpha})} =
      sum_{k=0}^infty frac{(-1)^k x^{kbeta}}{x^{(1+k)alpha}}$$

      and integrating term-by-term
      $$I_{alpha,beta} = sum_{k=0}^infty frac{(-1)^{k}}{(1+k)alpha - k beta -1}
      = frac{1}{beta-1}+frac{Psileft(frac{beta - 1}{2alpha-2beta}right) - Psileft(frac{alpha-1}{2alpha-2beta}right)}{2alpha-2beta}$$

      where $Psi$ is the digamma function.






      share|cite|improve this answer











      $endgroup$



      Let's say $alpha > max(1,beta)$.
      $$ frac{1}{x^alpha + x^beta} = frac{1}{x^alpha (1 + x^{beta-alpha})} =
      sum_{k=0}^infty frac{(-1)^k x^{kbeta}}{x^{(1+k)alpha}}$$

      and integrating term-by-term
      $$I_{alpha,beta} = sum_{k=0}^infty frac{(-1)^{k}}{(1+k)alpha - k beta -1}
      = frac{1}{beta-1}+frac{Psileft(frac{beta - 1}{2alpha-2beta}right) - Psileft(frac{alpha-1}{2alpha-2beta}right)}{2alpha-2beta}$$

      where $Psi$ is the digamma function.







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Jan 4 at 23:32









      Peter Foreman

      4177




      4177










      answered Jan 4 at 20:58









      Robert IsraelRobert Israel

      320k23210462




      320k23210462












      • $begingroup$
        How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:19










      • $begingroup$
        +1. How about for all $alpha$ in $mathbb{R}$?
        $endgroup$
        – Gustavo Louis G. Montańo
        Jan 4 at 21:36








      • 1




        $begingroup$
        @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:42








      • 1




        $begingroup$
        This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
        $endgroup$
        – Peter Foreman
        Jan 4 at 22:04












      • $begingroup$
        Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
        $endgroup$
        – omegadot
        Jan 5 at 2:28


















      • $begingroup$
        How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:19










      • $begingroup$
        +1. How about for all $alpha$ in $mathbb{R}$?
        $endgroup$
        – Gustavo Louis G. Montańo
        Jan 4 at 21:36








      • 1




        $begingroup$
        @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
        $endgroup$
        – Peter Foreman
        Jan 4 at 21:42








      • 1




        $begingroup$
        This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
        $endgroup$
        – Peter Foreman
        Jan 4 at 22:04












      • $begingroup$
        Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
        $endgroup$
        – omegadot
        Jan 5 at 2:28
















      $begingroup$
      How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
      $endgroup$
      – Peter Foreman
      Jan 4 at 21:19




      $begingroup$
      How do you transform the sum into the digamma representation? Is there an identity which relates the digamma function to an infinite summation?
      $endgroup$
      – Peter Foreman
      Jan 4 at 21:19












      $begingroup$
      +1. How about for all $alpha$ in $mathbb{R}$?
      $endgroup$
      – Gustavo Louis G. Montańo
      Jan 4 at 21:36






      $begingroup$
      +1. How about for all $alpha$ in $mathbb{R}$?
      $endgroup$
      – Gustavo Louis G. Montańo
      Jan 4 at 21:36






      1




      1




      $begingroup$
      @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
      $endgroup$
      – Peter Foreman
      Jan 4 at 21:42






      $begingroup$
      @GustavoLouisG.Montańo The integral diverges when $alpha$ < max(1,$beta$) and is trivial when $alpha=beta$.
      $endgroup$
      – Peter Foreman
      Jan 4 at 21:42






      1




      1




      $begingroup$
      This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
      $endgroup$
      – Peter Foreman
      Jan 4 at 22:04






      $begingroup$
      This answer is actually valid for $alpha,betainmathbb{C}$ as well. As long as $mathfrak{R}(alpha) > $max(1,$mathfrak{R}(beta)$).
      $endgroup$
      – Peter Foreman
      Jan 4 at 22:04














      $begingroup$
      Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
      $endgroup$
      – omegadot
      Jan 5 at 2:28




      $begingroup$
      Robert - To use the geometric series you need to be inside its interval of convergence of $|x| < 1$. The limits of the original integral are from 1 to $infty$, hence the reason why I made the change of $x mapsto 1/x$ to begin with in my answer.
      $endgroup$
      – omegadot
      Jan 5 at 2:28











      2












      $begingroup$

      For $alpha neq beta $. Put $$t={1 over 1+ x^{beta - alpha}} .$$ Then you integral becomes



      begin{align} {1 over beta -alpha } int_0^{1 over 2 } t^{alpha -1 over beta - alpha }(1-t)^{1-beta over beta -alpha} , dt,end{align}



      which is ${1 over beta -alpha} B(1/2; {beta -1 over beta -alpha}, {1-alpha over beta -alpha}) $,



      where $B(x;mu,nu)$ is the incomplete Beta function.






      share|cite|improve this answer









      $endgroup$


















        2












        $begingroup$

        For $alpha neq beta $. Put $$t={1 over 1+ x^{beta - alpha}} .$$ Then you integral becomes



        begin{align} {1 over beta -alpha } int_0^{1 over 2 } t^{alpha -1 over beta - alpha }(1-t)^{1-beta over beta -alpha} , dt,end{align}



        which is ${1 over beta -alpha} B(1/2; {beta -1 over beta -alpha}, {1-alpha over beta -alpha}) $,



        where $B(x;mu,nu)$ is the incomplete Beta function.






        share|cite|improve this answer









        $endgroup$
















          2












          2








          2





          $begingroup$

          For $alpha neq beta $. Put $$t={1 over 1+ x^{beta - alpha}} .$$ Then you integral becomes



          begin{align} {1 over beta -alpha } int_0^{1 over 2 } t^{alpha -1 over beta - alpha }(1-t)^{1-beta over beta -alpha} , dt,end{align}



          which is ${1 over beta -alpha} B(1/2; {beta -1 over beta -alpha}, {1-alpha over beta -alpha}) $,



          where $B(x;mu,nu)$ is the incomplete Beta function.






          share|cite|improve this answer









          $endgroup$



          For $alpha neq beta $. Put $$t={1 over 1+ x^{beta - alpha}} .$$ Then you integral becomes



          begin{align} {1 over beta -alpha } int_0^{1 over 2 } t^{alpha -1 over beta - alpha }(1-t)^{1-beta over beta -alpha} , dt,end{align}



          which is ${1 over beta -alpha} B(1/2; {beta -1 over beta -alpha}, {1-alpha over beta -alpha}) $,



          where $B(x;mu,nu)$ is the incomplete Beta function.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 5 at 0:35









          moutheticsmouthetics

          50127




          50127























              1












              $begingroup$

              Assuming $beta > max (1,alpha)$. Enforcing a substitution of $x mapsto 1/x$ in the integral to begin with gives
              $$I_{alpha, beta} = int_0^1 frac{x^{beta - 2}}{1 + x^{beta -alpha}} , dx.$$
              Inside the interval of convergence, by exploiting the geometric series, namely
              $$frac{1}{1 + x^{beta - alpha}} = sum_{n = 0}^infty (-1)^n x^{n beta - n alpha}, qquad |x| < 1$$
              the integral can be rewritten as
              begin{align}
              I_{alpha, beta} &= sum_{n = 0}^infty (-1)^n int_0^1 x^{n beta - n alpha + beta - 2} , dx\
              &= sum_{n = 0}^infty (-1)^n frac{1}{n beta - n alpha + beta - 1}. qquad (*)
              end{align}

              To handle the infinity sum that arises we will make use of the following result (see Eq. (6) in the link)
              $$sum_{n = 0}^infty frac{(-1)^n}{z n + 1} = frac{1}{2z} left [psi left (frac{z + 1}{2z} right ) - psi left (frac{1}{2z} right ) right ]. qquad (**)$$
              Here $psi (x)$ is the digamma function.



              Rewriting the sum in ($*$) in the form of ($**$), namely
              $$I_{alpha, beta} = frac{1}{beta - 1} sum_{n = 0}^infty frac{(-1)^n}{left (dfrac{beta - alpha}{beta - 1} right ) n + 1},$$
              as we have $z = (beta - alpha)/(beta - 1)$, we finally arrive at
              $$I_{alpha, beta} = frac{1}{2beta - 2 alpha} left [psi left (frac{2 beta - alpha - 1}{2 beta - 2alpha} right ) - psi left (frac{beta - 1}{2 beta - 2alpha} right ) right ], qquad beta > max (1,alpha).$$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Assuming $beta > max (1,alpha)$. Enforcing a substitution of $x mapsto 1/x$ in the integral to begin with gives
                $$I_{alpha, beta} = int_0^1 frac{x^{beta - 2}}{1 + x^{beta -alpha}} , dx.$$
                Inside the interval of convergence, by exploiting the geometric series, namely
                $$frac{1}{1 + x^{beta - alpha}} = sum_{n = 0}^infty (-1)^n x^{n beta - n alpha}, qquad |x| < 1$$
                the integral can be rewritten as
                begin{align}
                I_{alpha, beta} &= sum_{n = 0}^infty (-1)^n int_0^1 x^{n beta - n alpha + beta - 2} , dx\
                &= sum_{n = 0}^infty (-1)^n frac{1}{n beta - n alpha + beta - 1}. qquad (*)
                end{align}

                To handle the infinity sum that arises we will make use of the following result (see Eq. (6) in the link)
                $$sum_{n = 0}^infty frac{(-1)^n}{z n + 1} = frac{1}{2z} left [psi left (frac{z + 1}{2z} right ) - psi left (frac{1}{2z} right ) right ]. qquad (**)$$
                Here $psi (x)$ is the digamma function.



                Rewriting the sum in ($*$) in the form of ($**$), namely
                $$I_{alpha, beta} = frac{1}{beta - 1} sum_{n = 0}^infty frac{(-1)^n}{left (dfrac{beta - alpha}{beta - 1} right ) n + 1},$$
                as we have $z = (beta - alpha)/(beta - 1)$, we finally arrive at
                $$I_{alpha, beta} = frac{1}{2beta - 2 alpha} left [psi left (frac{2 beta - alpha - 1}{2 beta - 2alpha} right ) - psi left (frac{beta - 1}{2 beta - 2alpha} right ) right ], qquad beta > max (1,alpha).$$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Assuming $beta > max (1,alpha)$. Enforcing a substitution of $x mapsto 1/x$ in the integral to begin with gives
                  $$I_{alpha, beta} = int_0^1 frac{x^{beta - 2}}{1 + x^{beta -alpha}} , dx.$$
                  Inside the interval of convergence, by exploiting the geometric series, namely
                  $$frac{1}{1 + x^{beta - alpha}} = sum_{n = 0}^infty (-1)^n x^{n beta - n alpha}, qquad |x| < 1$$
                  the integral can be rewritten as
                  begin{align}
                  I_{alpha, beta} &= sum_{n = 0}^infty (-1)^n int_0^1 x^{n beta - n alpha + beta - 2} , dx\
                  &= sum_{n = 0}^infty (-1)^n frac{1}{n beta - n alpha + beta - 1}. qquad (*)
                  end{align}

                  To handle the infinity sum that arises we will make use of the following result (see Eq. (6) in the link)
                  $$sum_{n = 0}^infty frac{(-1)^n}{z n + 1} = frac{1}{2z} left [psi left (frac{z + 1}{2z} right ) - psi left (frac{1}{2z} right ) right ]. qquad (**)$$
                  Here $psi (x)$ is the digamma function.



                  Rewriting the sum in ($*$) in the form of ($**$), namely
                  $$I_{alpha, beta} = frac{1}{beta - 1} sum_{n = 0}^infty frac{(-1)^n}{left (dfrac{beta - alpha}{beta - 1} right ) n + 1},$$
                  as we have $z = (beta - alpha)/(beta - 1)$, we finally arrive at
                  $$I_{alpha, beta} = frac{1}{2beta - 2 alpha} left [psi left (frac{2 beta - alpha - 1}{2 beta - 2alpha} right ) - psi left (frac{beta - 1}{2 beta - 2alpha} right ) right ], qquad beta > max (1,alpha).$$






                  share|cite|improve this answer









                  $endgroup$



                  Assuming $beta > max (1,alpha)$. Enforcing a substitution of $x mapsto 1/x$ in the integral to begin with gives
                  $$I_{alpha, beta} = int_0^1 frac{x^{beta - 2}}{1 + x^{beta -alpha}} , dx.$$
                  Inside the interval of convergence, by exploiting the geometric series, namely
                  $$frac{1}{1 + x^{beta - alpha}} = sum_{n = 0}^infty (-1)^n x^{n beta - n alpha}, qquad |x| < 1$$
                  the integral can be rewritten as
                  begin{align}
                  I_{alpha, beta} &= sum_{n = 0}^infty (-1)^n int_0^1 x^{n beta - n alpha + beta - 2} , dx\
                  &= sum_{n = 0}^infty (-1)^n frac{1}{n beta - n alpha + beta - 1}. qquad (*)
                  end{align}

                  To handle the infinity sum that arises we will make use of the following result (see Eq. (6) in the link)
                  $$sum_{n = 0}^infty frac{(-1)^n}{z n + 1} = frac{1}{2z} left [psi left (frac{z + 1}{2z} right ) - psi left (frac{1}{2z} right ) right ]. qquad (**)$$
                  Here $psi (x)$ is the digamma function.



                  Rewriting the sum in ($*$) in the form of ($**$), namely
                  $$I_{alpha, beta} = frac{1}{beta - 1} sum_{n = 0}^infty frac{(-1)^n}{left (dfrac{beta - alpha}{beta - 1} right ) n + 1},$$
                  as we have $z = (beta - alpha)/(beta - 1)$, we finally arrive at
                  $$I_{alpha, beta} = frac{1}{2beta - 2 alpha} left [psi left (frac{2 beta - alpha - 1}{2 beta - 2alpha} right ) - psi left (frac{beta - 1}{2 beta - 2alpha} right ) right ], qquad beta > max (1,alpha).$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 5 at 2:17









                  omegadotomegadot

                  5,0652727




                  5,0652727






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3062082%2fcompute-int-1-infty-frac1x-alpha-x-betadx%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                      How to fix TextFormField cause rebuild widget in Flutter