Change of quantifiers in the definition of continuity.
$begingroup$
Let $f(x)$ be a continuous function on $Bbb{R}$ and $a in Bbb{R}$
$forall epsilon>0$ we define the set $$S_{epsilon}={delta>0|forall x:0<|x-a|<delta Rightarrow 0<|f(x)-f(a)|<epsilon}$$
Assume that $forall epsilon>0$ we have $S_{epsilon}=(0,+infty)$
What can someone conclude about $f(x)$?
I believe that $f$ is constant $f(a)$
Assume that $exists x_0 in Bbb{R}$ such that $|f(x_0)-f(a)|>0$
Put $epsilon_0=|f(x_0)-f(a)|>0$
Then we have that $S_{epsilon_0}=(0,+infty)$
We choose $delta_0>0$ big enough such that $x_0 in (a-delta_0,a+delta_0)$
Then we can easily see that $delta_0 notin S_{epsilon_0}Rightarrow S_{epsilon_0} neq (0,+infty)$ which is a contradiction.
Thus $f(x)=f(a), forall x in Bbb{R}$.
Is my proof correct?
Thank you in advance.
real-analysis proof-verification continuity epsilon-delta
$endgroup$
add a comment |
$begingroup$
Let $f(x)$ be a continuous function on $Bbb{R}$ and $a in Bbb{R}$
$forall epsilon>0$ we define the set $$S_{epsilon}={delta>0|forall x:0<|x-a|<delta Rightarrow 0<|f(x)-f(a)|<epsilon}$$
Assume that $forall epsilon>0$ we have $S_{epsilon}=(0,+infty)$
What can someone conclude about $f(x)$?
I believe that $f$ is constant $f(a)$
Assume that $exists x_0 in Bbb{R}$ such that $|f(x_0)-f(a)|>0$
Put $epsilon_0=|f(x_0)-f(a)|>0$
Then we have that $S_{epsilon_0}=(0,+infty)$
We choose $delta_0>0$ big enough such that $x_0 in (a-delta_0,a+delta_0)$
Then we can easily see that $delta_0 notin S_{epsilon_0}Rightarrow S_{epsilon_0} neq (0,+infty)$ which is a contradiction.
Thus $f(x)=f(a), forall x in Bbb{R}$.
Is my proof correct?
Thank you in advance.
real-analysis proof-verification continuity epsilon-delta
$endgroup$
2
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37
add a comment |
$begingroup$
Let $f(x)$ be a continuous function on $Bbb{R}$ and $a in Bbb{R}$
$forall epsilon>0$ we define the set $$S_{epsilon}={delta>0|forall x:0<|x-a|<delta Rightarrow 0<|f(x)-f(a)|<epsilon}$$
Assume that $forall epsilon>0$ we have $S_{epsilon}=(0,+infty)$
What can someone conclude about $f(x)$?
I believe that $f$ is constant $f(a)$
Assume that $exists x_0 in Bbb{R}$ such that $|f(x_0)-f(a)|>0$
Put $epsilon_0=|f(x_0)-f(a)|>0$
Then we have that $S_{epsilon_0}=(0,+infty)$
We choose $delta_0>0$ big enough such that $x_0 in (a-delta_0,a+delta_0)$
Then we can easily see that $delta_0 notin S_{epsilon_0}Rightarrow S_{epsilon_0} neq (0,+infty)$ which is a contradiction.
Thus $f(x)=f(a), forall x in Bbb{R}$.
Is my proof correct?
Thank you in advance.
real-analysis proof-verification continuity epsilon-delta
$endgroup$
Let $f(x)$ be a continuous function on $Bbb{R}$ and $a in Bbb{R}$
$forall epsilon>0$ we define the set $$S_{epsilon}={delta>0|forall x:0<|x-a|<delta Rightarrow 0<|f(x)-f(a)|<epsilon}$$
Assume that $forall epsilon>0$ we have $S_{epsilon}=(0,+infty)$
What can someone conclude about $f(x)$?
I believe that $f$ is constant $f(a)$
Assume that $exists x_0 in Bbb{R}$ such that $|f(x_0)-f(a)|>0$
Put $epsilon_0=|f(x_0)-f(a)|>0$
Then we have that $S_{epsilon_0}=(0,+infty)$
We choose $delta_0>0$ big enough such that $x_0 in (a-delta_0,a+delta_0)$
Then we can easily see that $delta_0 notin S_{epsilon_0}Rightarrow S_{epsilon_0} neq (0,+infty)$ which is a contradiction.
Thus $f(x)=f(a), forall x in Bbb{R}$.
Is my proof correct?
Thank you in advance.
real-analysis proof-verification continuity epsilon-delta
real-analysis proof-verification continuity epsilon-delta
edited Jan 17 at 9:31
Marios Gretsas
asked Jan 16 at 12:09
Marios GretsasMarios Gretsas
8,48011437
8,48011437
2
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37
add a comment |
2
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37
2
2
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075661%2fchange-of-quantifiers-in-the-definition-of-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075661%2fchange-of-quantifiers-in-the-definition-of-continuity%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown

2
$begingroup$
Yes, it is correct.
$endgroup$
– Kavi Rama Murthy
Jan 16 at 12:16
$begingroup$
Nice..Thank you.:)
$endgroup$
– Marios Gretsas
Jan 16 at 12:17
$begingroup$
In the definition of S are a and x supposed to be constants?
$endgroup$
– William Elliot
Jan 16 at 12:20
$begingroup$
Only $a$ is a constant..$x$ is not from hypothesis that $S_{epsilon}=(0,+infty)$
$endgroup$
– Marios Gretsas
Jan 16 at 12:22
$begingroup$
@MariosGretsas. Then the definition of S is missing a quantifier.
$endgroup$
– William Elliot
Jan 16 at 21:37