Bayesian probability: proving $P(x|y,x) = 1$












0












$begingroup$


I have an exercise where I'm supposed to prove that $P(x|y,x) = 1$



I've come up with the following but I'm not sure if it feels right to me:



$P(x|y,x) =$



$P(x,y,x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y|x)P(x) = $



We now have



$P(x|y,x) = P(x|y,x)$



So:



$P(x|y,x) / P(x|y,x) = P(x|y,x) / P(x|y,x) = 1$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You question is not clear. What does $p(x,y,x)$ mean?
    $endgroup$
    – user144410
    Jan 16 at 13:27












  • $begingroup$
    Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:40


















0












$begingroup$


I have an exercise where I'm supposed to prove that $P(x|y,x) = 1$



I've come up with the following but I'm not sure if it feels right to me:



$P(x|y,x) =$



$P(x,y,x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y|x)P(x) = $



We now have



$P(x|y,x) = P(x|y,x)$



So:



$P(x|y,x) / P(x|y,x) = P(x|y,x) / P(x|y,x) = 1$



Is this correct?










share|cite|improve this question











$endgroup$












  • $begingroup$
    You question is not clear. What does $p(x,y,x)$ mean?
    $endgroup$
    – user144410
    Jan 16 at 13:27












  • $begingroup$
    Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:40
















0












0








0





$begingroup$


I have an exercise where I'm supposed to prove that $P(x|y,x) = 1$



I've come up with the following but I'm not sure if it feels right to me:



$P(x|y,x) =$



$P(x,y,x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y|x)P(x) = $



We now have



$P(x|y,x) = P(x|y,x)$



So:



$P(x|y,x) / P(x|y,x) = P(x|y,x) / P(x|y,x) = 1$



Is this correct?










share|cite|improve this question











$endgroup$




I have an exercise where I'm supposed to prove that $P(x|y,x) = 1$



I've come up with the following but I'm not sure if it feels right to me:



$P(x|y,x) =$



$P(x,y,x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y,x) = $



$P(x|y,x)P(y|x)P(x) / P(y|x)P(x) = $



We now have



$P(x|y,x) = P(x|y,x)$



So:



$P(x|y,x) / P(x|y,x) = P(x|y,x) / P(x|y,x) = 1$



Is this correct?







bayesian bayes-theorem






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 13:31







ronaldfisher

















asked Jan 16 at 13:21









ronaldfisherronaldfisher

11




11












  • $begingroup$
    You question is not clear. What does $p(x,y,x)$ mean?
    $endgroup$
    – user144410
    Jan 16 at 13:27












  • $begingroup$
    Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:40




















  • $begingroup$
    You question is not clear. What does $p(x,y,x)$ mean?
    $endgroup$
    – user144410
    Jan 16 at 13:27












  • $begingroup$
    Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:40


















$begingroup$
You question is not clear. What does $p(x,y,x)$ mean?
$endgroup$
– user144410
Jan 16 at 13:27






$begingroup$
You question is not clear. What does $p(x,y,x)$ mean?
$endgroup$
– user144410
Jan 16 at 13:27














$begingroup$
Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
$endgroup$
– ronaldfisher
Jan 16 at 13:40






$begingroup$
Sorry, it might be an unusual notation used in my class, it means P(x∩y∩x)
$endgroup$
– ronaldfisher
Jan 16 at 13:40












1 Answer
1






active

oldest

votes


















0












$begingroup$

Assuming that $P(x|y,x) = P(x|y cap x)$, just note that
$$x cap y cap x = y cap x Rightarrow P(x|y cap x) = frac{P(x cap y cap x)}{P(y cap x)} = frac{P(y cap x)}{P(y cap x)} = 1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You assumed right. Thank you
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:36











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075715%2fbayesian-probability-proving-pxy-x-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0












$begingroup$

Assuming that $P(x|y,x) = P(x|y cap x)$, just note that
$$x cap y cap x = y cap x Rightarrow P(x|y cap x) = frac{P(x cap y cap x)}{P(y cap x)} = frac{P(y cap x)}{P(y cap x)} = 1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You assumed right. Thank you
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:36
















0












$begingroup$

Assuming that $P(x|y,x) = P(x|y cap x)$, just note that
$$x cap y cap x = y cap x Rightarrow P(x|y cap x) = frac{P(x cap y cap x)}{P(y cap x)} = frac{P(y cap x)}{P(y cap x)} = 1$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    You assumed right. Thank you
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:36














0












0








0





$begingroup$

Assuming that $P(x|y,x) = P(x|y cap x)$, just note that
$$x cap y cap x = y cap x Rightarrow P(x|y cap x) = frac{P(x cap y cap x)}{P(y cap x)} = frac{P(y cap x)}{P(y cap x)} = 1$$






share|cite|improve this answer









$endgroup$



Assuming that $P(x|y,x) = P(x|y cap x)$, just note that
$$x cap y cap x = y cap x Rightarrow P(x|y cap x) = frac{P(x cap y cap x)}{P(y cap x)} = frac{P(y cap x)}{P(y cap x)} = 1$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 16 at 13:32









trancelocationtrancelocation

12.1k1826




12.1k1826












  • $begingroup$
    You assumed right. Thank you
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:36


















  • $begingroup$
    You assumed right. Thank you
    $endgroup$
    – ronaldfisher
    Jan 16 at 13:36
















$begingroup$
You assumed right. Thank you
$endgroup$
– ronaldfisher
Jan 16 at 13:36




$begingroup$
You assumed right. Thank you
$endgroup$
– ronaldfisher
Jan 16 at 13:36


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075715%2fbayesian-probability-proving-pxy-x-1%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

'app-layout' is not a known element: how to share Component with different Modules

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

WPF add header to Image with URL pettitions [duplicate]