Maximum value of function $f(x)=frac{x^4-x^2}{x^6+2x^3-1}$ when $x >1$
$begingroup$
What is the maximum value of the $$f(x)=frac{x^4-x^2}{x^6+2x^3-1}$$ where $x > 1$ .
My try
Unable to solve further.
real-analysis functions optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
add a comment |
$begingroup$
What is the maximum value of the $$f(x)=frac{x^4-x^2}{x^6+2x^3-1}$$ where $x > 1$ .
My try
Unable to solve further.
real-analysis functions optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11
add a comment |
$begingroup$
What is the maximum value of the $$f(x)=frac{x^4-x^2}{x^6+2x^3-1}$$ where $x > 1$ .
My try
Unable to solve further.
real-analysis functions optimization maxima-minima a.m.-g.m.-inequality
$endgroup$
What is the maximum value of the $$f(x)=frac{x^4-x^2}{x^6+2x^3-1}$$ where $x > 1$ .
My try
Unable to solve further.
real-analysis functions optimization maxima-minima a.m.-g.m.-inequality
real-analysis functions optimization maxima-minima a.m.-g.m.-inequality
edited Jan 16 at 15:48
cattt
asked Jan 16 at 11:40
catttcattt
242
242
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11
add a comment |
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $x-frac{1}{x}=t$.
Thus, $t>0$ and by AM-GM we obtain:
$$frac{x^4-x^2}{x^6+2x^3-1}=frac{x-frac{1}{x}}{x^2-frac{1}{x^3}+2}=frac{t}{t^3+3t+2}=$$
$$=frac{1}{t^2+frac{2}{t}+3}leqfrac{1}{3sqrt[3]{t^2left(frac{1}{t}right)^2}+3}=frac{1}{6}.$$
The equality occurs for $t=1$, which says that we got a maximal value.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075636%2fmaximum-value-of-function-fx-fracx4-x2x62x3-1-when-x-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $x-frac{1}{x}=t$.
Thus, $t>0$ and by AM-GM we obtain:
$$frac{x^4-x^2}{x^6+2x^3-1}=frac{x-frac{1}{x}}{x^2-frac{1}{x^3}+2}=frac{t}{t^3+3t+2}=$$
$$=frac{1}{t^2+frac{2}{t}+3}leqfrac{1}{3sqrt[3]{t^2left(frac{1}{t}right)^2}+3}=frac{1}{6}.$$
The equality occurs for $t=1$, which says that we got a maximal value.
$endgroup$
add a comment |
$begingroup$
Let $x-frac{1}{x}=t$.
Thus, $t>0$ and by AM-GM we obtain:
$$frac{x^4-x^2}{x^6+2x^3-1}=frac{x-frac{1}{x}}{x^2-frac{1}{x^3}+2}=frac{t}{t^3+3t+2}=$$
$$=frac{1}{t^2+frac{2}{t}+3}leqfrac{1}{3sqrt[3]{t^2left(frac{1}{t}right)^2}+3}=frac{1}{6}.$$
The equality occurs for $t=1$, which says that we got a maximal value.
$endgroup$
add a comment |
$begingroup$
Let $x-frac{1}{x}=t$.
Thus, $t>0$ and by AM-GM we obtain:
$$frac{x^4-x^2}{x^6+2x^3-1}=frac{x-frac{1}{x}}{x^2-frac{1}{x^3}+2}=frac{t}{t^3+3t+2}=$$
$$=frac{1}{t^2+frac{2}{t}+3}leqfrac{1}{3sqrt[3]{t^2left(frac{1}{t}right)^2}+3}=frac{1}{6}.$$
The equality occurs for $t=1$, which says that we got a maximal value.
$endgroup$
Let $x-frac{1}{x}=t$.
Thus, $t>0$ and by AM-GM we obtain:
$$frac{x^4-x^2}{x^6+2x^3-1}=frac{x-frac{1}{x}}{x^2-frac{1}{x^3}+2}=frac{t}{t^3+3t+2}=$$
$$=frac{1}{t^2+frac{2}{t}+3}leqfrac{1}{3sqrt[3]{t^2left(frac{1}{t}right)^2}+3}=frac{1}{6}.$$
The equality occurs for $t=1$, which says that we got a maximal value.
answered Jan 16 at 13:49
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075636%2fmaximum-value-of-function-fx-fracx4-x2x62x3-1-when-x-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What are $a$ and $b$ on the second page?
$endgroup$
– Matti P.
Jan 16 at 11:43
$begingroup$
Hint: the derivative can be written as $$ f'(x) = frac{-2x(x^2 +1)(x^2-x-1)(x^4 + x^3 - x^2 - x -1)}{(x^6 + 2x^3 -1)^2} $$ Source: wolframalpha.com/input/…
$endgroup$
– Matti P.
Jan 16 at 11:46
$begingroup$
$f(x)$ would be maximum when $1/f(x)$ would be minimum.
$endgroup$
– Paras Khosla
Jan 16 at 14:11