Easier way to parametrize an ellipse.












1












$begingroup$


I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$



As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    There are other parametrization options. Do you want this particular one?
    $endgroup$
    – Andrei
    Jan 16 at 14:01
















1












$begingroup$


I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$



As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?










share|cite|improve this question











$endgroup$












  • $begingroup$
    There are other parametrization options. Do you want this particular one?
    $endgroup$
    – Andrei
    Jan 16 at 14:01














1












1








1


1



$begingroup$


I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$



As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?










share|cite|improve this question











$endgroup$




I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$



As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?







multivariable-calculus parametrization






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 13:46









user376343

3,8133828




3,8133828










asked Jan 16 at 13:37









John KeeperJohn Keeper

532315




532315












  • $begingroup$
    There are other parametrization options. Do you want this particular one?
    $endgroup$
    – Andrei
    Jan 16 at 14:01


















  • $begingroup$
    There are other parametrization options. Do you want this particular one?
    $endgroup$
    – Andrei
    Jan 16 at 14:01
















$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01




$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01










2 Answers
2






active

oldest

votes


















1












$begingroup$

You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$






share|cite|improve this answer











$endgroup$





















    0












    $begingroup$

    $$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$



    Solve for $rho$ in terms of $theta$ and you are done.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075737%2feasier-way-to-parametrize-an-ellipse%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      You can parametrize in the original coordinates. Solving the plane for $z$ you have:
      $$x+y+z=1 iff z = 1-x-y tag{$star$}$$
      so substituting into the paraboloid and rewriting gives:
      $$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
      This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
      $$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
      to get:
      $$gamma : [0,2pi]tomathbb{R}^3: t mapsto
      left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
      sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
      2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$






      share|cite|improve this answer











      $endgroup$


















        1












        $begingroup$

        You can parametrize in the original coordinates. Solving the plane for $z$ you have:
        $$x+y+z=1 iff z = 1-x-y tag{$star$}$$
        so substituting into the paraboloid and rewriting gives:
        $$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
        This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
        $$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
        to get:
        $$gamma : [0,2pi]tomathbb{R}^3: t mapsto
        left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
        sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
        2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$






        share|cite|improve this answer











        $endgroup$
















          1












          1








          1





          $begingroup$

          You can parametrize in the original coordinates. Solving the plane for $z$ you have:
          $$x+y+z=1 iff z = 1-x-y tag{$star$}$$
          so substituting into the paraboloid and rewriting gives:
          $$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
          This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
          $$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
          to get:
          $$gamma : [0,2pi]tomathbb{R}^3: t mapsto
          left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
          sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
          2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$






          share|cite|improve this answer











          $endgroup$



          You can parametrize in the original coordinates. Solving the plane for $z$ you have:
          $$x+y+z=1 iff z = 1-x-y tag{$star$}$$
          so substituting into the paraboloid and rewriting gives:
          $$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
          This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
          $$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
          to get:
          $$gamma : [0,2pi]tomathbb{R}^3: t mapsto
          left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
          sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
          2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 16 at 14:29

























          answered Jan 16 at 14:17









          StackTDStackTD

          22.9k2152




          22.9k2152























              0












              $begingroup$

              $$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$



              Solve for $rho$ in terms of $theta$ and you are done.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                $$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$



                Solve for $rho$ in terms of $theta$ and you are done.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  $$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$



                  Solve for $rho$ in terms of $theta$ and you are done.






                  share|cite|improve this answer









                  $endgroup$



                  $$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$



                  Solve for $rho$ in terms of $theta$ and you are done.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 16 at 14:50









                  Yves DaoustYves Daoust

                  128k675227




                  128k675227






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075737%2feasier-way-to-parametrize-an-ellipse%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      'app-layout' is not a known element: how to share Component with different Modules

                      android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                      WPF add header to Image with URL pettitions [duplicate]