Easier way to parametrize an ellipse.
$begingroup$
I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$
As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?
multivariable-calculus parametrization
$endgroup$
add a comment |
$begingroup$
I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$
As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?
multivariable-calculus parametrization
$endgroup$
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01
add a comment |
$begingroup$
I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$
As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?
multivariable-calculus parametrization
$endgroup$
I want to calculate the parametrization of the curve $$E={(x,y,z):z=x^2+y^2,x+y+z=1}$$
To do so I did a change of variables taking as basis the vectors $frac{1}{sqrt{2}}(-1,1,0),frac{1}{sqrt{6}}(-1,-1,2),frac{1}{sqrt{3}}(1,1,1)$ which are the normal vector of the plane, and two other perpendicular vecors of the plane. With this basis the plane $x+y+z=1$ becomes $z'=sqrt{3}/3$, and $$begin{cases}x=-x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3}\y=x'/sqrt{2}-y'/sqrt{6}+z'/sqrt{3} \z=2y'/sqrt{6}+z'/sqrt{3}end{cases}$$
Now using this change of variables into $E$ I have that $$frac{(x')^2}{frac{1}{(3^{(1/4)})^2}}+frac{(y'-sqrt{2/3})^2}{(3^{(1/4)})^2}=1$$ and therefore the parametrization of the ellipse is $$x'=3^{1/4}costheta,;y'=sqrt{2/3}+3^{1/4}sintheta,; z'=sqrt{3}/3,; 0leq theta leq2pi$$
As I checked with wolfram alpha, this is correct. However it requires a lot of calculations to just parametrize this curve, is there any faster way to do it?
multivariable-calculus parametrization
multivariable-calculus parametrization
edited Jan 16 at 13:46
user376343
3,8133828
3,8133828
asked Jan 16 at 13:37
John KeeperJohn Keeper
532315
532315
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01
add a comment |
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$
$endgroup$
add a comment |
$begingroup$
$$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$
Solve for $rho$ in terms of $theta$ and you are done.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075737%2feasier-way-to-parametrize-an-ellipse%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$
$endgroup$
add a comment |
$begingroup$
You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$
$endgroup$
add a comment |
$begingroup$
You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$
$endgroup$
You can parametrize in the original coordinates. Solving the plane for $z$ you have:
$$x+y+z=1 iff z = 1-x-y tag{$star$}$$
so substituting into the paraboloid and rewriting gives:
$$z=x^2+y^2 implies 1-x-y=x^2+y^2 iff left(x+tfrac{1}{2}right)^2+left(y+tfrac{1}{2}right)^2=tfrac{3}{2}$$
This is easily parametrized as $x+tfrac{1}{2}=sqrt{tfrac{3}{2}}cos t$ and $y+tfrac{1}{2}=sqrt{tfrac{3}{2}}sin t$ and $z$ follows from $(star)$:
$$z = 1-x-y=1-left(sqrt{tfrac{3}{2}}cos t-tfrac{1}{2}right)-left(sqrt{tfrac{3}{2}}sin t-tfrac{1}{2}right)=2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t$$
to get:
$$gamma : [0,2pi]tomathbb{R}^3: t mapsto
left( sqrt{tfrac{3}{2}}cos t-tfrac{1}{2} ,
sqrt{tfrac{3}{2}}sin t-tfrac{1}{2} ,
2-sqrt{tfrac{3}{2}}cos t-sqrt{tfrac{3}{2}}sin t right)$$
edited Jan 16 at 14:29
answered Jan 16 at 14:17
StackTDStackTD
22.9k2152
22.9k2152
add a comment |
add a comment |
$begingroup$
$$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$
Solve for $rho$ in terms of $theta$ and you are done.
$endgroup$
add a comment |
$begingroup$
$$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$
Solve for $rho$ in terms of $theta$ and you are done.
$endgroup$
add a comment |
$begingroup$
$$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$
Solve for $rho$ in terms of $theta$ and you are done.
$endgroup$
$$z=x^2+y^2$$ hints the use of polar coordinates and the equation of the plane becomes $$rho^2+rho(costheta+sintheta)-1=0.$$
Solve for $rho$ in terms of $theta$ and you are done.
answered Jan 16 at 14:50
Yves DaoustYves Daoust
128k675227
128k675227
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075737%2feasier-way-to-parametrize-an-ellipse%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There are other parametrization options. Do you want this particular one?
$endgroup$
– Andrei
Jan 16 at 14:01