Evaluate $limlimits_{x to 1}dfrac{x-x^x}{1-x+ln x}$.
$begingroup$
Problem
Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.
Solution
Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain
$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}
Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?
real-analysis limits proof-verification
$endgroup$
add a comment |
$begingroup$
Problem
Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.
Solution
Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain
$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}
Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?
real-analysis limits proof-verification
$endgroup$
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15
add a comment |
$begingroup$
Problem
Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.
Solution
Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain
$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}
Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?
real-analysis limits proof-verification
$endgroup$
Problem
Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.
Solution
Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain
$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}
Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?
real-analysis limits proof-verification
real-analysis limits proof-verification
edited Jan 16 at 14:42
Michael Rozenberg
104k1892197
104k1892197
asked Jan 16 at 14:23
mengdie1982mengdie1982
4,897618
4,897618
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15
add a comment |
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$1-x=himplies$
$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$
So, you are correct
$endgroup$
add a comment |
$begingroup$
Why no?
$$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$
$endgroup$
add a comment |
$begingroup$
Another solution by L'Hospital's rule
Let $x=:1+h$. Then
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
&=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
&=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
&=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
&=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
&=2lim_{h to 0}(1+h)\
&=2.
end{align*}
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075787%2fevaluate-lim-limits-x-to-1-dfracx-xx1-x-ln-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$1-x=himplies$
$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$
So, you are correct
$endgroup$
add a comment |
$begingroup$
$1-x=himplies$
$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$
So, you are correct
$endgroup$
add a comment |
$begingroup$
$1-x=himplies$
$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$
So, you are correct
$endgroup$
$1-x=himplies$
$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$
So, you are correct
answered Jan 16 at 14:32
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
add a comment |
add a comment |
$begingroup$
Why no?
$$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$
$endgroup$
add a comment |
$begingroup$
Why no?
$$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$
$endgroup$
add a comment |
$begingroup$
Why no?
$$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$
$endgroup$
Why no?
$$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$
answered Jan 16 at 14:40
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
add a comment |
add a comment |
$begingroup$
Another solution by L'Hospital's rule
Let $x=:1+h$. Then
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
&=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
&=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
&=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
&=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
&=2lim_{h to 0}(1+h)\
&=2.
end{align*}
$endgroup$
add a comment |
$begingroup$
Another solution by L'Hospital's rule
Let $x=:1+h$. Then
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
&=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
&=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
&=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
&=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
&=2lim_{h to 0}(1+h)\
&=2.
end{align*}
$endgroup$
add a comment |
$begingroup$
Another solution by L'Hospital's rule
Let $x=:1+h$. Then
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
&=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
&=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
&=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
&=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
&=2lim_{h to 0}(1+h)\
&=2.
end{align*}
$endgroup$
Another solution by L'Hospital's rule
Let $x=:1+h$. Then
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
&=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
&=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
&=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
&=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
&=2lim_{h to 0}(1+h)\
&=2.
end{align*}
answered Jan 16 at 14:57
mengdie1982mengdie1982
4,897618
4,897618
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075787%2fevaluate-lim-limits-x-to-1-dfracx-xx1-x-ln-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40
$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15