Evaluate $limlimits_{x to 1}dfrac{x-x^x}{1-x+ln x}$.












2












$begingroup$


Problem



Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.



Solution



Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain



$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}



Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?










share|cite|improve this question











$endgroup$












  • $begingroup$
    How do you get the expansion of $x^x$ ?
    $endgroup$
    – Yves Daoust
    Jan 16 at 14:40












  • $begingroup$
    l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
    $endgroup$
    – user376343
    Jan 16 at 16:15


















2












$begingroup$


Problem



Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.



Solution



Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain



$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}



Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?










share|cite|improve this question











$endgroup$












  • $begingroup$
    How do you get the expansion of $x^x$ ?
    $endgroup$
    – Yves Daoust
    Jan 16 at 14:40












  • $begingroup$
    l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
    $endgroup$
    – user376343
    Jan 16 at 16:15
















2












2








2





$begingroup$


Problem



Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.



Solution



Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain



$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}



Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?










share|cite|improve this question











$endgroup$




Problem



Evaluate $$limlimits_{x to 1}frac{x-x^x}{1-x+ln x}$$.



Solution



Consider using Taylor's formula. Expand $x^x $ and $ln x$ at $x=1$. We obtain



$$x^x=1+(x-1)+(x-1)^2+o((x-1)^2);$$
$$ln x=(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2).$$
Therefore
begin{align*}
lim_{x to 1}
frac{x-x^x}{1-x+ln x}&=lim_{x to 1}frac{x-[1+(x-1)+(x-1)^2+o((x-1)^2)]}{1-x+[(x-1)-frac{1}{2}(x-1)^2+o((x-1)^2)]}\
&=lim_{x to 1}frac{-(x-1)^2-o((x-1)^2)}{-frac{1}{2}(x-1)^2+o((x-1)^2)}\
&=2.
end{align*}



Please correct me if I'm wrong! Can we solve it by L'Hospital's rule?







real-analysis limits proof-verification






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 14:42









Michael Rozenberg

104k1892197




104k1892197










asked Jan 16 at 14:23









mengdie1982mengdie1982

4,897618




4,897618












  • $begingroup$
    How do you get the expansion of $x^x$ ?
    $endgroup$
    – Yves Daoust
    Jan 16 at 14:40












  • $begingroup$
    l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
    $endgroup$
    – user376343
    Jan 16 at 16:15




















  • $begingroup$
    How do you get the expansion of $x^x$ ?
    $endgroup$
    – Yves Daoust
    Jan 16 at 14:40












  • $begingroup$
    l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
    $endgroup$
    – user376343
    Jan 16 at 16:15


















$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40






$begingroup$
How do you get the expansion of $x^x$ ?
$endgroup$
– Yves Daoust
Jan 16 at 14:40














$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15






$begingroup$
l'Hospital's rule can be used because it is the case $0/0$ and the denominator derivative $(x-1+ln x)'neq 0$ if $xneq 1.$
$endgroup$
– user376343
Jan 16 at 16:15












3 Answers
3






active

oldest

votes


















2












$begingroup$

$1-x=himplies$



$$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$



So, you are correct






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Why no?
    $$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$






    share|cite|improve this answer









    $endgroup$





















      1












      $begingroup$

      Another solution by L'Hospital's rule



      Let $x=:1+h$. Then
      begin{align*}
      lim_{x to 1}
      frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
      &=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
      &=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
      &=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
      &=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
      &=2lim_{h to 0}(1+h)\
      &=2.
      end{align*}






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075787%2fevaluate-lim-limits-x-to-1-dfracx-xx1-x-ln-x%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        2












        $begingroup$

        $1-x=himplies$



        $$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$



        So, you are correct






        share|cite|improve this answer









        $endgroup$


















          2












          $begingroup$

          $1-x=himplies$



          $$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$



          So, you are correct






          share|cite|improve this answer









          $endgroup$
















            2












            2








            2





            $begingroup$

            $1-x=himplies$



            $$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$



            So, you are correct






            share|cite|improve this answer









            $endgroup$



            $1-x=himplies$



            $$lim_{hto0}(1-h)cdotdfrac{1-(1-h)^{-h}}{h+ln(1-h)}=lim_{hto0}dfrac{1-left(1+(-h)(-h)+dfrac{(-h)(-h-1)}2cdot h^2+O(h^3)right)}{h-left(h+dfrac{h^2}2+O(h^3)right)}=dfrac1{dfrac12}$$



            So, you are correct







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Jan 16 at 14:32









            lab bhattacharjeelab bhattacharjee

            226k15157275




            226k15157275























                2












                $begingroup$

                Why no?
                $$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$






                share|cite|improve this answer









                $endgroup$


















                  2












                  $begingroup$

                  Why no?
                  $$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$






                  share|cite|improve this answer









                  $endgroup$
















                    2












                    2








                    2





                    $begingroup$

                    Why no?
                    $$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$






                    share|cite|improve this answer









                    $endgroup$



                    Why no?
                    $$lim_{xrightarrow1}frac{x-x^x}{1-x+ln{x}}=lim_{xrightarrow1}frac{1-x^x(1+ln{x})}{-1+frac{1}{x}}=lim_{xrightarrow1}frac{-x^x(1+ln{x})^2-x^xcdotfrac{1}{x}}{-frac{1}{x^2}}=2$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 16 at 14:40









                    Michael RozenbergMichael Rozenberg

                    104k1892197




                    104k1892197























                        1












                        $begingroup$

                        Another solution by L'Hospital's rule



                        Let $x=:1+h$. Then
                        begin{align*}
                        lim_{x to 1}
                        frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
                        &=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
                        &=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
                        &=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
                        &=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
                        &=2lim_{h to 0}(1+h)\
                        &=2.
                        end{align*}






                        share|cite|improve this answer









                        $endgroup$


















                          1












                          $begingroup$

                          Another solution by L'Hospital's rule



                          Let $x=:1+h$. Then
                          begin{align*}
                          lim_{x to 1}
                          frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
                          &=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
                          &=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
                          &=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
                          &=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
                          &=2lim_{h to 0}(1+h)\
                          &=2.
                          end{align*}






                          share|cite|improve this answer









                          $endgroup$
















                            1












                            1








                            1





                            $begingroup$

                            Another solution by L'Hospital's rule



                            Let $x=:1+h$. Then
                            begin{align*}
                            lim_{x to 1}
                            frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
                            &=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
                            &=2lim_{h to 0}(1+h)\
                            &=2.
                            end{align*}






                            share|cite|improve this answer









                            $endgroup$



                            Another solution by L'Hospital's rule



                            Let $x=:1+h$. Then
                            begin{align*}
                            lim_{x to 1}
                            frac{x-x^x}{1-x+ln x}&=lim_{h to 0}frac{(1+h)[1-(1+h)^{h}]}{ln(1+h)-h}\
                            &=lim_{h to 0}frac{e^{hln(1+h)}-1}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{hln(1+h)}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{h^2}{h-ln(1+h)}\
                            &=lim_{h to 0}frac{2h}{1-frac{1}{1+h}}\
                            &=2lim_{h to 0}(1+h)\
                            &=2.
                            end{align*}







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 16 at 14:57









                            mengdie1982mengdie1982

                            4,897618




                            4,897618






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075787%2fevaluate-lim-limits-x-to-1-dfracx-xx1-x-ln-x%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                                Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                                A Topological Invariant for $pi_3(U(n))$