Solve the differential equation $t^2y''+3ty'+y=frac{1}{t}$












2












$begingroup$


Solve the equation



$$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$



My try:



The given differential equation is actually of second order:



Let us use the substitution:



$ty=p$



$$ty'+y=frac{dp}{dt}-(1)$$



$$ty''+2y'=frac{d^2p}{dt^2}$$



$$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$



Adding (1) and (2) we get:



$$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$



Hence the equation is now:



$$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$



Let us use another substitution:



$frac{dp}{dt}=q$



Then the equation is:



$$tfrac{dq}{dt}+q=frac{1}{t}$$



$$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$



Which is a Linear first order differential equation with integrating factor given by:



$$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$



The solution is:



$$qt=int frac{dt}{t}+C$$



$$qt=ln t+C$$



$$q=frac{ln t+C}{t}$$



Now we get:



$$frac{dp}{dt}=frac{ln t+C}{t}$$



Integrating we get:



$$p=int frac{ln t}{t}+int frac{C}{t}+D$$



$$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



Hence the final solution is:



$$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



$$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$



Where $C$ and $D$ are constants:



Is there any different approach?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Solve the equation



    $$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$



    My try:



    The given differential equation is actually of second order:



    Let us use the substitution:



    $ty=p$



    $$ty'+y=frac{dp}{dt}-(1)$$



    $$ty''+2y'=frac{d^2p}{dt^2}$$



    $$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$



    Adding (1) and (2) we get:



    $$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$



    Hence the equation is now:



    $$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$



    Let us use another substitution:



    $frac{dp}{dt}=q$



    Then the equation is:



    $$tfrac{dq}{dt}+q=frac{1}{t}$$



    $$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$



    Which is a Linear first order differential equation with integrating factor given by:



    $$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$



    The solution is:



    $$qt=int frac{dt}{t}+C$$



    $$qt=ln t+C$$



    $$q=frac{ln t+C}{t}$$



    Now we get:



    $$frac{dp}{dt}=frac{ln t+C}{t}$$



    Integrating we get:



    $$p=int frac{ln t}{t}+int frac{C}{t}+D$$



    $$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



    Hence the final solution is:



    $$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



    $$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$



    Where $C$ and $D$ are constants:



    Is there any different approach?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Solve the equation



      $$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$



      My try:



      The given differential equation is actually of second order:



      Let us use the substitution:



      $ty=p$



      $$ty'+y=frac{dp}{dt}-(1)$$



      $$ty''+2y'=frac{d^2p}{dt^2}$$



      $$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$



      Adding (1) and (2) we get:



      $$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$



      Hence the equation is now:



      $$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$



      Let us use another substitution:



      $frac{dp}{dt}=q$



      Then the equation is:



      $$tfrac{dq}{dt}+q=frac{1}{t}$$



      $$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$



      Which is a Linear first order differential equation with integrating factor given by:



      $$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$



      The solution is:



      $$qt=int frac{dt}{t}+C$$



      $$qt=ln t+C$$



      $$q=frac{ln t+C}{t}$$



      Now we get:



      $$frac{dp}{dt}=frac{ln t+C}{t}$$



      Integrating we get:



      $$p=int frac{ln t}{t}+int frac{C}{t}+D$$



      $$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



      Hence the final solution is:



      $$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



      $$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$



      Where $C$ and $D$ are constants:



      Is there any different approach?










      share|cite|improve this question









      $endgroup$




      Solve the equation



      $$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$



      My try:



      The given differential equation is actually of second order:



      Let us use the substitution:



      $ty=p$



      $$ty'+y=frac{dp}{dt}-(1)$$



      $$ty''+2y'=frac{d^2p}{dt^2}$$



      $$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$



      Adding (1) and (2) we get:



      $$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$



      Hence the equation is now:



      $$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$



      Let us use another substitution:



      $frac{dp}{dt}=q$



      Then the equation is:



      $$tfrac{dq}{dt}+q=frac{1}{t}$$



      $$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$



      Which is a Linear first order differential equation with integrating factor given by:



      $$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$



      The solution is:



      $$qt=int frac{dt}{t}+C$$



      $$qt=ln t+C$$



      $$q=frac{ln t+C}{t}$$



      Now we get:



      $$frac{dp}{dt}=frac{ln t+C}{t}$$



      Integrating we get:



      $$p=int frac{ln t}{t}+int frac{C}{t}+D$$



      $$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



      Hence the final solution is:



      $$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$



      $$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$



      Where $C$ and $D$ are constants:



      Is there any different approach?







      integration algebra-precalculus ordinary-differential-equations derivatives






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 16 at 14:23









      Umesh shankarUmesh shankar

      2,72231220




      2,72231220






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          The given ODE reduces to the following solution



          begin{align*}
          & t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
          &int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
          & (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
          end{align*}






          share|cite|improve this answer











          $endgroup$





















            1












            $begingroup$

            The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
            $$
            0=r(r-1)+3r+1=(r+1)^2.
            $$

            The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.



            As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075790%2fsolve-the-differential-equation-t2y3tyy-frac1t%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              3












              $begingroup$

              The given ODE reduces to the following solution



              begin{align*}
              & t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
              &int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
              & (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
              end{align*}






              share|cite|improve this answer











              $endgroup$


















                3












                $begingroup$

                The given ODE reduces to the following solution



                begin{align*}
                & t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
                &int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
                & (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
                end{align*}






                share|cite|improve this answer











                $endgroup$
















                  3












                  3








                  3





                  $begingroup$

                  The given ODE reduces to the following solution



                  begin{align*}
                  & t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
                  &int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
                  & (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
                  end{align*}






                  share|cite|improve this answer











                  $endgroup$



                  The given ODE reduces to the following solution



                  begin{align*}
                  & t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
                  &int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
                  & (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
                  end{align*}







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Jan 16 at 17:08

























                  answered Jan 16 at 15:03









                  user1337user1337

                  46110




                  46110























                      1












                      $begingroup$

                      The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
                      $$
                      0=r(r-1)+3r+1=(r+1)^2.
                      $$

                      The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.



                      As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
                        $$
                        0=r(r-1)+3r+1=(r+1)^2.
                        $$

                        The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.



                        As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
                          $$
                          0=r(r-1)+3r+1=(r+1)^2.
                          $$

                          The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.



                          As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.






                          share|cite|improve this answer









                          $endgroup$



                          The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
                          $$
                          0=r(r-1)+3r+1=(r+1)^2.
                          $$

                          The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.



                          As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 16 at 15:12









                          LutzLLutzL

                          58.8k42056




                          58.8k42056






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075790%2fsolve-the-differential-equation-t2y3tyy-frac1t%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

                              Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

                              A Topological Invariant for $pi_3(U(n))$