Solve the differential equation $t^2y''+3ty'+y=frac{1}{t}$
$begingroup$
Solve the equation
$$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$
My try:
The given differential equation is actually of second order:
Let us use the substitution:
$ty=p$
$$ty'+y=frac{dp}{dt}-(1)$$
$$ty''+2y'=frac{d^2p}{dt^2}$$
$$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$
Adding (1) and (2) we get:
$$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$
Hence the equation is now:
$$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$
Let us use another substitution:
$frac{dp}{dt}=q$
Then the equation is:
$$tfrac{dq}{dt}+q=frac{1}{t}$$
$$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$
Which is a Linear first order differential equation with integrating factor given by:
$$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$
The solution is:
$$qt=int frac{dt}{t}+C$$
$$qt=ln t+C$$
$$q=frac{ln t+C}{t}$$
Now we get:
$$frac{dp}{dt}=frac{ln t+C}{t}$$
Integrating we get:
$$p=int frac{ln t}{t}+int frac{C}{t}+D$$
$$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
Hence the final solution is:
$$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
$$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$
Where $C$ and $D$ are constants:
Is there any different approach?
integration algebra-precalculus ordinary-differential-equations derivatives
$endgroup$
add a comment |
$begingroup$
Solve the equation
$$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$
My try:
The given differential equation is actually of second order:
Let us use the substitution:
$ty=p$
$$ty'+y=frac{dp}{dt}-(1)$$
$$ty''+2y'=frac{d^2p}{dt^2}$$
$$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$
Adding (1) and (2) we get:
$$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$
Hence the equation is now:
$$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$
Let us use another substitution:
$frac{dp}{dt}=q$
Then the equation is:
$$tfrac{dq}{dt}+q=frac{1}{t}$$
$$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$
Which is a Linear first order differential equation with integrating factor given by:
$$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$
The solution is:
$$qt=int frac{dt}{t}+C$$
$$qt=ln t+C$$
$$q=frac{ln t+C}{t}$$
Now we get:
$$frac{dp}{dt}=frac{ln t+C}{t}$$
Integrating we get:
$$p=int frac{ln t}{t}+int frac{C}{t}+D$$
$$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
Hence the final solution is:
$$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
$$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$
Where $C$ and $D$ are constants:
Is there any different approach?
integration algebra-precalculus ordinary-differential-equations derivatives
$endgroup$
add a comment |
$begingroup$
Solve the equation
$$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$
My try:
The given differential equation is actually of second order:
Let us use the substitution:
$ty=p$
$$ty'+y=frac{dp}{dt}-(1)$$
$$ty''+2y'=frac{d^2p}{dt^2}$$
$$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$
Adding (1) and (2) we get:
$$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$
Hence the equation is now:
$$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$
Let us use another substitution:
$frac{dp}{dt}=q$
Then the equation is:
$$tfrac{dq}{dt}+q=frac{1}{t}$$
$$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$
Which is a Linear first order differential equation with integrating factor given by:
$$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$
The solution is:
$$qt=int frac{dt}{t}+C$$
$$qt=ln t+C$$
$$q=frac{ln t+C}{t}$$
Now we get:
$$frac{dp}{dt}=frac{ln t+C}{t}$$
Integrating we get:
$$p=int frac{ln t}{t}+int frac{C}{t}+D$$
$$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
Hence the final solution is:
$$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
$$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$
Where $C$ and $D$ are constants:
Is there any different approach?
integration algebra-precalculus ordinary-differential-equations derivatives
$endgroup$
Solve the equation
$$t^2y''+3ty'+y=frac{1}{t}$$ with $t gt 0$
My try:
The given differential equation is actually of second order:
Let us use the substitution:
$ty=p$
$$ty'+y=frac{dp}{dt}-(1)$$
$$ty''+2y'=frac{d^2p}{dt^2}$$
$$t^2y''+2ty'=tfrac{d^2p}{dt^2}-(2)$$
Adding (1) and (2) we get:
$$t^2y''+3ty'+y=tfrac{d^2p}{dt^2}+frac{dp}{dt}$$
Hence the equation is now:
$$tfrac{d^2p}{dt^2}+frac{dp}{dt}=frac{1}{t}$$
Let us use another substitution:
$frac{dp}{dt}=q$
Then the equation is:
$$tfrac{dq}{dt}+q=frac{1}{t}$$
$$frac{dq}{dt}+frac{q}{t}=frac{1}{t^2}$$
Which is a Linear first order differential equation with integrating factor given by:
$$I(t)=e^{int frac{dt}{t}}=e^{ln|t|}=|t|=t$$
The solution is:
$$qt=int frac{dt}{t}+C$$
$$qt=ln t+C$$
$$q=frac{ln t+C}{t}$$
Now we get:
$$frac{dp}{dt}=frac{ln t+C}{t}$$
Integrating we get:
$$p=int frac{ln t}{t}+int frac{C}{t}+D$$
$$p=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
Hence the final solution is:
$$ty=frac{1}{2}left(ln tright)^2+Cln(t)+D$$
$$y=frac{frac{1}{2}left(ln tright)^2+Cln(t)+D}{t}$$
Where $C$ and $D$ are constants:
Is there any different approach?
integration algebra-precalculus ordinary-differential-equations derivatives
integration algebra-precalculus ordinary-differential-equations derivatives
asked Jan 16 at 14:23
Umesh shankarUmesh shankar
2,72231220
2,72231220
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
The given ODE reduces to the following solution
begin{align*}
& t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
&int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
& (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
end{align*}
$endgroup$
add a comment |
$begingroup$
The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
$$
0=r(r-1)+3r+1=(r+1)^2.
$$
The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.
As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075790%2fsolve-the-differential-equation-t2y3tyy-frac1t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The given ODE reduces to the following solution
begin{align*}
& t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
&int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
& (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
end{align*}
$endgroup$
add a comment |
$begingroup$
The given ODE reduces to the following solution
begin{align*}
& t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
&int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
& (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
end{align*}
$endgroup$
add a comment |
$begingroup$
The given ODE reduces to the following solution
begin{align*}
& t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
&int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
& (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
end{align*}
$endgroup$
The given ODE reduces to the following solution
begin{align*}
& t^{2}y^{primeprime} + 3ty^{prime} + y = frac{1}{t} Leftrightarrow (t^{2}y^{primeprime} + 2ty^{prime}) + (ty^{prime} + y) = frac{1}{t} Leftrightarrow (t^{2}y^{prime})^{prime} + (ty)^{prime} = frac{1}{t} Leftrightarrow\
&int (t^{2}y^{prime})^{prime}mathrm{d}t + int (ty)^{prime}mathrm{d}t = intfrac{1}{t}mathrm{d}t Leftrightarrow t^{2}y^{prime} + ty = ln|t| + c Leftrightarrow ty^{prime} + y = frac{ln|t| + c}{t} Leftrightarrow\
& (ty)^{prime} = frac{ln|t| + c}{t} Leftrightarrow int(ty)^{prime}mathrm{d}t = intleft(frac{ln|t|}{t} + frac{c}{t}right)mathrm{d}t Leftrightarrow y(t) = frac{ln^{2}|t|}{2t} + frac{cln|t|}{t} + frac{k}{t}
end{align*}
edited Jan 16 at 17:08
answered Jan 16 at 15:03
user1337user1337
46110
46110
add a comment |
add a comment |
$begingroup$
The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
$$
0=r(r-1)+3r+1=(r+1)^2.
$$
The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.
As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.
$endgroup$
add a comment |
$begingroup$
The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
$$
0=r(r-1)+3r+1=(r+1)^2.
$$
The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.
As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.
$endgroup$
add a comment |
$begingroup$
The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
$$
0=r(r-1)+3r+1=(r+1)^2.
$$
The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.
As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.
$endgroup$
The homogeneous equation is of Euler-Cauchy type, looking for basis solutions of the form $t^r$ leads to
$$
0=r(r-1)+3r+1=(r+1)^2.
$$
The basis solutions for this double root are thus $t^{-1}$, $t^{-1}ln t$.
As the right side has the same exponent $-1$, the method of undetermined coefficients provides indeed that the particular solution is of the form $y_p=Ct^{-1}(ln t)^2$. Insertion into the equation allows then to compute $C$.
answered Jan 16 at 15:12
LutzLLutzL
58.8k42056
58.8k42056
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075790%2fsolve-the-differential-equation-t2y3tyy-frac1t%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown