How would you calculate this limit? $limlimits_{n...
$begingroup$
I decided to calculate $int_{0}^{pi/2}cos(x)dx$ using the sum definition of the integral. Obviously the answer is $1$ . I managed to calculate the resulting limit using the geometric series, taking the real part of the complex exponential function and several iterations of l'hopital's rule. Are you able to simplify this absolute mess, i.e. find a better way of arriving at the desired answer?
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)$$
Every answer is highly appreciated =)
PS: If you want to see my solution, feel free to tell me! =)
real-analysis limits definite-integrals
$endgroup$
add a comment |
$begingroup$
I decided to calculate $int_{0}^{pi/2}cos(x)dx$ using the sum definition of the integral. Obviously the answer is $1$ . I managed to calculate the resulting limit using the geometric series, taking the real part of the complex exponential function and several iterations of l'hopital's rule. Are you able to simplify this absolute mess, i.e. find a better way of arriving at the desired answer?
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)$$
Every answer is highly appreciated =)
PS: If you want to see my solution, feel free to tell me! =)
real-analysis limits definite-integrals
$endgroup$
2
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
1
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
1
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59
add a comment |
$begingroup$
I decided to calculate $int_{0}^{pi/2}cos(x)dx$ using the sum definition of the integral. Obviously the answer is $1$ . I managed to calculate the resulting limit using the geometric series, taking the real part of the complex exponential function and several iterations of l'hopital's rule. Are you able to simplify this absolute mess, i.e. find a better way of arriving at the desired answer?
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)$$
Every answer is highly appreciated =)
PS: If you want to see my solution, feel free to tell me! =)
real-analysis limits definite-integrals
$endgroup$
I decided to calculate $int_{0}^{pi/2}cos(x)dx$ using the sum definition of the integral. Obviously the answer is $1$ . I managed to calculate the resulting limit using the geometric series, taking the real part of the complex exponential function and several iterations of l'hopital's rule. Are you able to simplify this absolute mess, i.e. find a better way of arriving at the desired answer?
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)$$
Every answer is highly appreciated =)
PS: If you want to see my solution, feel free to tell me! =)
real-analysis limits definite-integrals
real-analysis limits definite-integrals
edited Jan 16 at 9:26
rtybase
11k21533
11k21533
asked Jan 16 at 8:32


Flammable MathsFlammable Maths
1035
1035
2
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
1
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
1
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59
add a comment |
2
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
1
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
1
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59
2
2
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
1
1
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
1
1
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
HINTS:
(1)
begin{equation}
cosleft(frac{pi}{2n}cdot kright) = Releft[expleft(frac{pi}{2n}cdot k i right) right]
end{equation}
(2)
begin{equation}
expleft(frac{pi}{2n}cdot k i right) = a^k, quad a = expleft(frac{pi}{2n}i right)
end{equation}
(3)
begin{equation}
sum_{k = 1}^{n} a^k = frac{aleft(a^{n} - 1right)}{a - 1}
end{equation}
$endgroup$
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
add a comment |
$begingroup$
According to this question
$$1 + sumlimits_{k=1}^n cos{(k theta)}=frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)thetaright]}{2sinleft(frac{theta}{2}right)}$$
As a result
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)frac{pi}{2n}right]}{2sinleft(frac{frac{pi}{2n}}{2}right)}-1right)=\
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{sinleft(frac{pi}{2}+frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}-frac{1}{2}right)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{cosleft(frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}right)=\
frac{limlimits_{n rightarrowinfty}cosleft(frac{pi}{4n}right)}{limlimits_{n rightarrowinfty} frac{sinleft(frac{pi}{4n}right)}{frac{pi}{4n}}}=frac{1}{1}=1$$
using the fact that $limlimits_{xrightarrow 0}frac{sin{x}}{x}=1$.
$endgroup$
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
add a comment |
$begingroup$
Here's an approach without Euler's formula using telescoping. With the help of the sum-product formula, we can see
$$begin{eqnarray}
sinfrac{theta}{2}sum_{k=1}^ncos ktheta &=&frac{1}{2}sum_{k=0}^nleft(sinfrac{2k+1}{2}theta-sinfrac{2k-1}{2}thetaright)\
&=&frac{1}{2}left(sinfrac{2n+1}{2}theta-sinfrac{1}{2}thetaright).
end{eqnarray}$$ This gives
$$begin{eqnarray}
limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)&=&limlimits_{n rightarrowinfty}frac{pi}{4nsinfrac{pi}{4n}}left(sinfrac{2n+1}{4n}pi-sinfrac{1}{4n}piright)=sinfrac{pi}{2}=1.
end{eqnarray}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075475%2fhow-would-you-calculate-this-limit-lim-limits-n-rightarrow-infty-frac-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
HINTS:
(1)
begin{equation}
cosleft(frac{pi}{2n}cdot kright) = Releft[expleft(frac{pi}{2n}cdot k i right) right]
end{equation}
(2)
begin{equation}
expleft(frac{pi}{2n}cdot k i right) = a^k, quad a = expleft(frac{pi}{2n}i right)
end{equation}
(3)
begin{equation}
sum_{k = 1}^{n} a^k = frac{aleft(a^{n} - 1right)}{a - 1}
end{equation}
$endgroup$
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
add a comment |
$begingroup$
HINTS:
(1)
begin{equation}
cosleft(frac{pi}{2n}cdot kright) = Releft[expleft(frac{pi}{2n}cdot k i right) right]
end{equation}
(2)
begin{equation}
expleft(frac{pi}{2n}cdot k i right) = a^k, quad a = expleft(frac{pi}{2n}i right)
end{equation}
(3)
begin{equation}
sum_{k = 1}^{n} a^k = frac{aleft(a^{n} - 1right)}{a - 1}
end{equation}
$endgroup$
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
add a comment |
$begingroup$
HINTS:
(1)
begin{equation}
cosleft(frac{pi}{2n}cdot kright) = Releft[expleft(frac{pi}{2n}cdot k i right) right]
end{equation}
(2)
begin{equation}
expleft(frac{pi}{2n}cdot k i right) = a^k, quad a = expleft(frac{pi}{2n}i right)
end{equation}
(3)
begin{equation}
sum_{k = 1}^{n} a^k = frac{aleft(a^{n} - 1right)}{a - 1}
end{equation}
$endgroup$
HINTS:
(1)
begin{equation}
cosleft(frac{pi}{2n}cdot kright) = Releft[expleft(frac{pi}{2n}cdot k i right) right]
end{equation}
(2)
begin{equation}
expleft(frac{pi}{2n}cdot k i right) = a^k, quad a = expleft(frac{pi}{2n}i right)
end{equation}
(3)
begin{equation}
sum_{k = 1}^{n} a^k = frac{aleft(a^{n} - 1right)}{a - 1}
end{equation}
answered Jan 16 at 8:56


DavidGDavidG
2,1421724
2,1421724
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
add a comment |
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
$begingroup$
Like I said, this is exactly my approach^^
$endgroup$
– Flammable Maths
Jan 16 at 9:30
1
1
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
Then why did you have to ask the question then?
$endgroup$
– DavidG
Jan 16 at 9:38
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
To find a simplified approach.
$endgroup$
– Flammable Maths
Jan 16 at 10:33
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
$begingroup$
@FlammableMaths - Okay, where did you get stuck?
$endgroup$
– DavidG
Jan 16 at 10:37
add a comment |
$begingroup$
According to this question
$$1 + sumlimits_{k=1}^n cos{(k theta)}=frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)thetaright]}{2sinleft(frac{theta}{2}right)}$$
As a result
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)frac{pi}{2n}right]}{2sinleft(frac{frac{pi}{2n}}{2}right)}-1right)=\
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{sinleft(frac{pi}{2}+frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}-frac{1}{2}right)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{cosleft(frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}right)=\
frac{limlimits_{n rightarrowinfty}cosleft(frac{pi}{4n}right)}{limlimits_{n rightarrowinfty} frac{sinleft(frac{pi}{4n}right)}{frac{pi}{4n}}}=frac{1}{1}=1$$
using the fact that $limlimits_{xrightarrow 0}frac{sin{x}}{x}=1$.
$endgroup$
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
add a comment |
$begingroup$
According to this question
$$1 + sumlimits_{k=1}^n cos{(k theta)}=frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)thetaright]}{2sinleft(frac{theta}{2}right)}$$
As a result
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)frac{pi}{2n}right]}{2sinleft(frac{frac{pi}{2n}}{2}right)}-1right)=\
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{sinleft(frac{pi}{2}+frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}-frac{1}{2}right)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{cosleft(frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}right)=\
frac{limlimits_{n rightarrowinfty}cosleft(frac{pi}{4n}right)}{limlimits_{n rightarrowinfty} frac{sinleft(frac{pi}{4n}right)}{frac{pi}{4n}}}=frac{1}{1}=1$$
using the fact that $limlimits_{xrightarrow 0}frac{sin{x}}{x}=1$.
$endgroup$
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
add a comment |
$begingroup$
According to this question
$$1 + sumlimits_{k=1}^n cos{(k theta)}=frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)thetaright]}{2sinleft(frac{theta}{2}right)}$$
As a result
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)frac{pi}{2n}right]}{2sinleft(frac{frac{pi}{2n}}{2}right)}-1right)=\
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{sinleft(frac{pi}{2}+frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}-frac{1}{2}right)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{cosleft(frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}right)=\
frac{limlimits_{n rightarrowinfty}cosleft(frac{pi}{4n}right)}{limlimits_{n rightarrowinfty} frac{sinleft(frac{pi}{4n}right)}{frac{pi}{4n}}}=frac{1}{1}=1$$
using the fact that $limlimits_{xrightarrow 0}frac{sin{x}}{x}=1$.
$endgroup$
According to this question
$$1 + sumlimits_{k=1}^n cos{(k theta)}=frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)thetaright]}{2sinleft(frac{theta}{2}right)}$$
As a result
$$limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{1}{2}+frac{sinleft[left(n+frac{1}{2}right)frac{pi}{2n}right]}{2sinleft(frac{frac{pi}{2n}}{2}right)}-1right)=\
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{sinleft(frac{pi}{2}+frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}-frac{1}{2}right)=
limlimits_{n rightarrowinfty}frac{pi}{2n}left(frac{cosleft(frac{pi}{4n}right)}{2sinleft(frac{pi}{4n}right)}right)=\
frac{limlimits_{n rightarrowinfty}cosleft(frac{pi}{4n}right)}{limlimits_{n rightarrowinfty} frac{sinleft(frac{pi}{4n}right)}{frac{pi}{4n}}}=frac{1}{1}=1$$
using the fact that $limlimits_{xrightarrow 0}frac{sin{x}}{x}=1$.
answered Jan 16 at 9:25
rtybasertybase
11k21533
11k21533
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
add a comment |
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
1
1
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
$begingroup$
Omg! The dirichlet kernel... That's basically where I also got the idea from regarding the use of the geometric series. I should have just rewritten everything ^^' Awesome, great simplification =)
$endgroup$
– Flammable Maths
Jan 16 at 9:29
add a comment |
$begingroup$
Here's an approach without Euler's formula using telescoping. With the help of the sum-product formula, we can see
$$begin{eqnarray}
sinfrac{theta}{2}sum_{k=1}^ncos ktheta &=&frac{1}{2}sum_{k=0}^nleft(sinfrac{2k+1}{2}theta-sinfrac{2k-1}{2}thetaright)\
&=&frac{1}{2}left(sinfrac{2n+1}{2}theta-sinfrac{1}{2}thetaright).
end{eqnarray}$$ This gives
$$begin{eqnarray}
limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)&=&limlimits_{n rightarrowinfty}frac{pi}{4nsinfrac{pi}{4n}}left(sinfrac{2n+1}{4n}pi-sinfrac{1}{4n}piright)=sinfrac{pi}{2}=1.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Here's an approach without Euler's formula using telescoping. With the help of the sum-product formula, we can see
$$begin{eqnarray}
sinfrac{theta}{2}sum_{k=1}^ncos ktheta &=&frac{1}{2}sum_{k=0}^nleft(sinfrac{2k+1}{2}theta-sinfrac{2k-1}{2}thetaright)\
&=&frac{1}{2}left(sinfrac{2n+1}{2}theta-sinfrac{1}{2}thetaright).
end{eqnarray}$$ This gives
$$begin{eqnarray}
limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)&=&limlimits_{n rightarrowinfty}frac{pi}{4nsinfrac{pi}{4n}}left(sinfrac{2n+1}{4n}pi-sinfrac{1}{4n}piright)=sinfrac{pi}{2}=1.
end{eqnarray}$$
$endgroup$
add a comment |
$begingroup$
Here's an approach without Euler's formula using telescoping. With the help of the sum-product formula, we can see
$$begin{eqnarray}
sinfrac{theta}{2}sum_{k=1}^ncos ktheta &=&frac{1}{2}sum_{k=0}^nleft(sinfrac{2k+1}{2}theta-sinfrac{2k-1}{2}thetaright)\
&=&frac{1}{2}left(sinfrac{2n+1}{2}theta-sinfrac{1}{2}thetaright).
end{eqnarray}$$ This gives
$$begin{eqnarray}
limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)&=&limlimits_{n rightarrowinfty}frac{pi}{4nsinfrac{pi}{4n}}left(sinfrac{2n+1}{4n}pi-sinfrac{1}{4n}piright)=sinfrac{pi}{2}=1.
end{eqnarray}$$
$endgroup$
Here's an approach without Euler's formula using telescoping. With the help of the sum-product formula, we can see
$$begin{eqnarray}
sinfrac{theta}{2}sum_{k=1}^ncos ktheta &=&frac{1}{2}sum_{k=0}^nleft(sinfrac{2k+1}{2}theta-sinfrac{2k-1}{2}thetaright)\
&=&frac{1}{2}left(sinfrac{2n+1}{2}theta-sinfrac{1}{2}thetaright).
end{eqnarray}$$ This gives
$$begin{eqnarray}
limlimits_{n rightarrowinfty}frac{pi}{2n}sumlimits_{k=1}^{n}cosleft(frac{pi}{2n}kright)&=&limlimits_{n rightarrowinfty}frac{pi}{4nsinfrac{pi}{4n}}left(sinfrac{2n+1}{4n}pi-sinfrac{1}{4n}piright)=sinfrac{pi}{2}=1.
end{eqnarray}$$
edited Jan 16 at 10:10
answered Jan 16 at 10:02
SongSong
14.2k1633
14.2k1633
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075475%2fhow-would-you-calculate-this-limit-lim-limits-n-rightarrow-infty-frac-pi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Indeed, that will be good to see your solution.
$endgroup$
– mathcounterexamples.net
Jan 16 at 8:35
1
$begingroup$
$1$ is the result!
$endgroup$
– Dr. Sonnhard Graubner
Jan 16 at 8:42
$begingroup$
Here is it, I hope you can make sense of it! =) imgur.com/a/rWhICtl
$endgroup$
– Flammable Maths
Jan 16 at 8:44
1
$begingroup$
Use math.stackexchange.com/questions/469885/…
$endgroup$
– lab bhattacharjee
Jan 16 at 8:57
$begingroup$
Brooo flammy! I'm a huge fan!
$endgroup$
– clathratus
Jan 21 at 16:59