Reducing an algebraic summation expression
$begingroup$
Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$
where all the other elements run until $(N-1)$
How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?
sequences-and-series summation
$endgroup$
add a comment |
$begingroup$
Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$
where all the other elements run until $(N-1)$
How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?
sequences-and-series summation
$endgroup$
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25
add a comment |
$begingroup$
Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$
where all the other elements run until $(N-1)$
How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?
sequences-and-series summation
$endgroup$
Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$
where all the other elements run until $(N-1)$
How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?
sequences-and-series summation
sequences-and-series summation
asked Jan 16 at 9:18


jarheadjarhead
1308
1308
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25
add a comment |
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We just need to look at two instances in order to see what's going on.
We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}
and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}
We deduce for positive integers $m<N$:
begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}
which can be shown rigorously for instance by using induction by $mgeq 1$.
The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}
We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}
$endgroup$
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
|
show 6 more comments
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075508%2freducing-an-algebraic-summation-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We just need to look at two instances in order to see what's going on.
We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}
and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}
We deduce for positive integers $m<N$:
begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}
which can be shown rigorously for instance by using induction by $mgeq 1$.
The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}
We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}
$endgroup$
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
|
show 6 more comments
$begingroup$
We just need to look at two instances in order to see what's going on.
We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}
and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}
We deduce for positive integers $m<N$:
begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}
which can be shown rigorously for instance by using induction by $mgeq 1$.
The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}
We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}
$endgroup$
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
|
show 6 more comments
$begingroup$
We just need to look at two instances in order to see what's going on.
We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}
and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}
We deduce for positive integers $m<N$:
begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}
which can be shown rigorously for instance by using induction by $mgeq 1$.
The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}
We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}
$endgroup$
We just need to look at two instances in order to see what's going on.
We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}
and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}
We deduce for positive integers $m<N$:
begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}
which can be shown rigorously for instance by using induction by $mgeq 1$.
The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}
We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}
edited Jan 17 at 16:08
answered Jan 16 at 14:53


Markus ScheuerMarkus Scheuer
61.9k457149
61.9k457149
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
|
show 6 more comments
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00
1
1
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16
1
1
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45
1
1
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15
1
1
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11
|
show 6 more comments
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075508%2freducing-an-algebraic-summation-expression%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23
$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25