Reducing an algebraic summation expression












1












$begingroup$


Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$



where all the other elements run until $(N-1)$



How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?










share|cite|improve this question









$endgroup$












  • $begingroup$
    The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
    $endgroup$
    – Florian
    Jan 16 at 9:23










  • $begingroup$
    @Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
    $endgroup$
    – jarhead
    Jan 16 at 9:25
















1












$begingroup$


Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$



where all the other elements run until $(N-1)$



How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?










share|cite|improve this question









$endgroup$












  • $begingroup$
    The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
    $endgroup$
    – Florian
    Jan 16 at 9:23










  • $begingroup$
    @Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
    $endgroup$
    – jarhead
    Jan 16 at 9:25














1












1








1


0



$begingroup$


Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$



where all the other elements run until $(N-1)$



How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?










share|cite|improve this question









$endgroup$




Consider the following elements of an algebraic series
$$sum_{i=1}^Nc(theta_i)$$
$$frac{1}{N}sum_{j=1}^Nsum_{i=1,ineq j}^Nc(theta_i)$$
$$frac{1}{N-1}frac{1}{N}sum_{k=1}^Nsum_{array{j=1 \jneq k}}^Nsum_{array{i=1\ineq j\ineq k}}^Nc(theta_i)$$
$$frac{1}{N-2}frac{1}{N-1}frac{1}{N}sum_{l=1}^Nsum_{array{k=1\lneq k}}^Nsum_{array{j=1 \jneq k\jneq l}}^Nsum_{array{i=1\ineq j\ineq k \i neq l}}^Nc(theta_i)$$



where all the other elements run until $(N-1)$



How can I write a general expression for this series, and can the summation and average of all the elements in the series can be written?







sequences-and-series summation






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 16 at 9:18









jarheadjarhead

1308




1308












  • $begingroup$
    The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
    $endgroup$
    – Florian
    Jan 16 at 9:23










  • $begingroup$
    @Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
    $endgroup$
    – jarhead
    Jan 16 at 9:25


















  • $begingroup$
    The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
    $endgroup$
    – Florian
    Jan 16 at 9:23










  • $begingroup$
    @Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
    $endgroup$
    – jarhead
    Jan 16 at 9:25
















$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23




$begingroup$
The argument of the sum only depends on $i$. Are you sure it is meant this way, shouldn't it also depend on $j, k, l$?
$endgroup$
– Florian
Jan 16 at 9:23












$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25




$begingroup$
@Florian, yes each expression is actuly an average of all the possible configurations of $c(theta_i)$ when we count $N,N-1,N-2...$ elements.
$endgroup$
– jarhead
Jan 16 at 9:25










1 Answer
1






active

oldest

votes


















1












$begingroup$

We just need to look at two instances in order to see what's going on.




We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}

and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}



We deduce for positive integers $m<N$:



begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}

which can be shown rigorously for instance by using induction by $mgeq 1$.




The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}



We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
    $endgroup$
    – jarhead
    Jan 17 at 12:00






  • 1




    $begingroup$
    @jarhead: Typos corrected. Thanks for pointing at it.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 12:16






  • 1




    $begingroup$
    @jarhead: I've added some info which might help to clarify open aspects.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 13:45






  • 1




    $begingroup$
    @jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 15:15






  • 1




    $begingroup$
    @jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 16:11











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075508%2freducing-an-algebraic-summation-expression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

We just need to look at two instances in order to see what's going on.




We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}

and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}



We deduce for positive integers $m<N$:



begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}

which can be shown rigorously for instance by using induction by $mgeq 1$.




The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}



We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
    $endgroup$
    – jarhead
    Jan 17 at 12:00






  • 1




    $begingroup$
    @jarhead: Typos corrected. Thanks for pointing at it.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 12:16






  • 1




    $begingroup$
    @jarhead: I've added some info which might help to clarify open aspects.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 13:45






  • 1




    $begingroup$
    @jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 15:15






  • 1




    $begingroup$
    @jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 16:11
















1












$begingroup$

We just need to look at two instances in order to see what's going on.




We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}

and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}



We deduce for positive integers $m<N$:



begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}

which can be shown rigorously for instance by using induction by $mgeq 1$.




The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}



We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}






share|cite|improve this answer











$endgroup$













  • $begingroup$
    in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
    $endgroup$
    – jarhead
    Jan 17 at 12:00






  • 1




    $begingroup$
    @jarhead: Typos corrected. Thanks for pointing at it.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 12:16






  • 1




    $begingroup$
    @jarhead: I've added some info which might help to clarify open aspects.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 13:45






  • 1




    $begingroup$
    @jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 15:15






  • 1




    $begingroup$
    @jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 16:11














1












1








1





$begingroup$

We just need to look at two instances in order to see what's going on.




We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}

and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}



We deduce for positive integers $m<N$:



begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}

which can be shown rigorously for instance by using induction by $mgeq 1$.




The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}



We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}






share|cite|improve this answer











$endgroup$



We just need to look at two instances in order to see what's going on.




We obtain
begin{align*}
color{blue}{sum_{j=1}^Nsum_{{i=1}atop{ineq j}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)sum_{i=1}^Nc(theta_i)}
end{align*}

and
begin{align*}
color{blue}{sum_{k=1}^Nsum_{{j=1}atop{jneq k}}^Nsum_{{i=1}atop{ineq j,ineq k}}^Nc(theta_i)}
&=sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^Nsum_{{i=1}atop{ineq j,ineq k}}^N1\
&=(N-2)sum_{i=1}^Nc(theta_i)sum_{{j=1}atop{jneq i}}^N1\
&,,color{blue}{=(N-1)(N-2)sum_{i=1}^Nc(theta_i)}
end{align*}



We deduce for positive integers $m<N$:



begin{align*}
frac{(N-m)!}{N!}sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^Ncdots
sum_{{k_m=1}atop{k_mneq k_j, 0leq j<m}}^Nc(theta_{k_m})
=frac{N-m}{N}sum_{k_m=1}^Nc(theta_{k_m})tag{1}
end{align*}

which can be shown rigorously for instance by using induction by $mgeq 1$.




The general part corresponds to the examples above by
begin{align*}
&(j,i)to(k_0,k_1)quad &(m=1)\
&(k,j,i)to (k_0,k_1,k_2)quad &(m=2)
end{align*}



We obtain for $m=3$ from (1):
begin{align*}
color{blue}{frac{(N-3)!}{N!}}&color{blue}{sum_{k_0=1}^N
sum_{{k_1=1}atop{k_1neq k_j, 0leq j< 1}}^N
sum_{{k_2=1}atop{k_2neq k_j, 0leq j<2}}^N
sum_{{k_3=1}atop{k_3neq k_j, 0leq j<3}}^N
c(theta_{k_3})}\
&=frac{1}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N
sum_{{k_0=1}atop{k_0neq k_{3-j}, 0leq j<3}}^N1\
&=frac{N-3}{N(N-1)(N-2)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N
sum_{{k_1=1}atop{k_1neq k_{3-j}, 0leq j<2}}^N1\
&=frac{N-3}{N(N-1)}sum_{k_3=1}^Nc(theta_{k_3})
sum_{{k_2=1}atop{k_2neq k_{3-j}, 0leq j< 1}}^N1\
&,,color{blue}{=frac{N-3}{N}sum_{k_3=1}^Nc(theta_{k_3})}
end{align*}







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 17 at 16:08

























answered Jan 16 at 14:53









Markus ScheuerMarkus Scheuer

61.9k457149




61.9k457149












  • $begingroup$
    in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
    $endgroup$
    – jarhead
    Jan 17 at 12:00






  • 1




    $begingroup$
    @jarhead: Typos corrected. Thanks for pointing at it.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 12:16






  • 1




    $begingroup$
    @jarhead: I've added some info which might help to clarify open aspects.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 13:45






  • 1




    $begingroup$
    @jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 15:15






  • 1




    $begingroup$
    @jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 16:11


















  • $begingroup$
    in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
    $endgroup$
    – jarhead
    Jan 17 at 12:00






  • 1




    $begingroup$
    @jarhead: Typos corrected. Thanks for pointing at it.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 12:16






  • 1




    $begingroup$
    @jarhead: I've added some info which might help to clarify open aspects.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 13:45






  • 1




    $begingroup$
    @jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 15:15






  • 1




    $begingroup$
    @jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
    $endgroup$
    – Markus Scheuer
    Jan 17 at 16:11
















$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00




$begingroup$
in the final result, the counting is not over the $i$'s. what does the counting of $k_0$ represent?
$endgroup$
– jarhead
Jan 17 at 12:00




1




1




$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16




$begingroup$
@jarhead: Typos corrected. Thanks for pointing at it.
$endgroup$
– Markus Scheuer
Jan 17 at 12:16




1




1




$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45




$begingroup$
@jarhead: I've added some info which might help to clarify open aspects.
$endgroup$
– Markus Scheuer
Jan 17 at 13:45




1




1




$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15




$begingroup$
@jarhead: When considering the special cases $m=1$ and $m=2$, we have $(N-1)!/N!=1/N$ and $(N-2)!/N!=1/(Ncdot (N-1))$ in accordance with the factors at the left-hand side of your second and third example.
$endgroup$
– Markus Scheuer
Jan 17 at 15:15




1




1




$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11




$begingroup$
@jarhead: Example added which should clarify the open points. $m$ is just a fixed number indicating the number of sums we sum over.
$endgroup$
– Markus Scheuer
Jan 17 at 16:11


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075508%2freducing-an-algebraic-summation-expression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter