$z_1^2+z_2^2+z_3^2=3z_0^2$ if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the...
$begingroup$
Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$
My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$
How do I proceed further and complete the proof ?
complex-numbers triangle centroid
$endgroup$
add a comment |
$begingroup$
Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$
My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$
How do I proceed further and complete the proof ?
complex-numbers triangle centroid
$endgroup$
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48
add a comment |
$begingroup$
Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$
My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$
How do I proceed further and complete the proof ?
complex-numbers triangle centroid
$endgroup$
Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$
My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$
How do I proceed further and complete the proof ?
complex-numbers triangle centroid
complex-numbers triangle centroid
edited Jan 16 at 13:16
ss1729
asked Jan 16 at 9:33


ss1729ss1729
1,9721923
1,9721923
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48
add a comment |
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$
On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$
Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$
Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$
Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$
$endgroup$
add a comment |
$begingroup$
Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
Id est, it's enough to prove that
$$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
$$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
$$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
$$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
Can you end it now?
$endgroup$
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075520%2fz-12z-22z-32-3z-02-if-z-1-z-2-z-3-be-the-vertices-of-an-equilateral-tr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$
On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$
Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$
Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$
Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$
$endgroup$
add a comment |
$begingroup$
Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$
On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$
Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$
Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$
Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$
$endgroup$
add a comment |
$begingroup$
Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$
On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$
Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$
Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$
Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$
$endgroup$
Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$
On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$
Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$
Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$
Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$
answered Jan 16 at 13:51


Mayank M.Mayank M.
493413
493413
add a comment |
add a comment |
$begingroup$
Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
Id est, it's enough to prove that
$$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
$$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
$$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
$$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
Can you end it now?
$endgroup$
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
add a comment |
$begingroup$
Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
Id est, it's enough to prove that
$$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
$$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
$$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
$$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
Can you end it now?
$endgroup$
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
add a comment |
$begingroup$
Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
Id est, it's enough to prove that
$$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
$$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
$$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
$$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
Can you end it now?
$endgroup$
Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
Id est, it's enough to prove that
$$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
$$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
$$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
$$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
Can you end it now?
edited Jan 16 at 10:16
answered Jan 16 at 9:50
Michael RozenbergMichael Rozenberg
104k1892197
104k1892197
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
add a comment |
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
"Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
$endgroup$
– Wojowu
Jan 16 at 10:06
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
$begingroup$
@Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:11
1
1
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
I disagree that they are the same computations. Similar - perhaps, but not identical.
$endgroup$
– Wojowu
Jan 16 at 10:14
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
$begingroup$
@Wojowu I added something. See now.
$endgroup$
– Michael Rozenberg
Jan 16 at 10:19
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075520%2fz-12z-22z-32-3z-02-if-z-1-z-2-z-3-be-the-vertices-of-an-equilateral-tr%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48