$z_1^2+z_2^2+z_3^2=3z_0^2$ if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the...












1












$begingroup$



Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$




My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$



How do I proceed further and complete the proof ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 9:48
















1












$begingroup$



Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$




My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$



How do I proceed further and complete the proof ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    $$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 9:48














1












1








1


3



$begingroup$



Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$




My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$



How do I proceed further and complete the proof ?










share|cite|improve this question











$endgroup$





Prove that, if $z_1,z_2,z_3$ be the vertices of an equilateral triangle and $z_0$ be the circumcentre, then $z_1^2+z_2^2+z_3^2=3z_0^2$




My Attempt
$$
z_0=frac{z_1+z_2+z_3}{3}implies 3z_0=z_1+z_2+z_3\
9z_0^2=z_1^2+z_2^2+z_3^2+2z_1z_2+2z_2z_3+2z_3z_1
$$



How do I proceed further and complete the proof ?







complex-numbers triangle centroid






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 16 at 13:16







ss1729

















asked Jan 16 at 9:33









ss1729ss1729

1,9721923




1,9721923












  • $begingroup$
    $$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 9:48


















  • $begingroup$
    $$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
    $endgroup$
    – lab bhattacharjee
    Jan 16 at 9:48
















$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48




$begingroup$
$$sqrt3=dfrac{z_1-z_0}{z_0-z_2}$$ Squaring we get $$3(z_0-z_2)^2=(z_1-z_0)^2iff?$$
$endgroup$
– lab bhattacharjee
Jan 16 at 9:48










2 Answers
2






active

oldest

votes


















1












$begingroup$

Here, we clearly know (by rotation theorem):
$$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$



On Solving you'll get:
$$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$



Further, we know:
$$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$



Transferring terms and squaring both sides we get (after using the prev. result):
$$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$



Or, we get:
$$z_1^2+z_2^2+z_3^2= 3z_0^2$$






share|cite|improve this answer









$endgroup$





















    2












    $begingroup$

    Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
    Id est, it's enough to prove that
    $$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
    $$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
    $$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
    $$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
    Can you end it now?






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
      $endgroup$
      – Wojowu
      Jan 16 at 10:06










    • $begingroup$
      @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
      $endgroup$
      – Michael Rozenberg
      Jan 16 at 10:11








    • 1




      $begingroup$
      I disagree that they are the same computations. Similar - perhaps, but not identical.
      $endgroup$
      – Wojowu
      Jan 16 at 10:14










    • $begingroup$
      @Wojowu I added something. See now.
      $endgroup$
      – Michael Rozenberg
      Jan 16 at 10:19











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075520%2fz-12z-22z-32-3z-02-if-z-1-z-2-z-3-be-the-vertices-of-an-equilateral-tr%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Here, we clearly know (by rotation theorem):
    $$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$



    On Solving you'll get:
    $$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$



    Further, we know:
    $$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$



    Transferring terms and squaring both sides we get (after using the prev. result):
    $$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$



    Or, we get:
    $$z_1^2+z_2^2+z_3^2= 3z_0^2$$






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Here, we clearly know (by rotation theorem):
      $$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$



      On Solving you'll get:
      $$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$



      Further, we know:
      $$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$



      Transferring terms and squaring both sides we get (after using the prev. result):
      $$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$



      Or, we get:
      $$z_1^2+z_2^2+z_3^2= 3z_0^2$$






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Here, we clearly know (by rotation theorem):
        $$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$



        On Solving you'll get:
        $$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$



        Further, we know:
        $$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$



        Transferring terms and squaring both sides we get (after using the prev. result):
        $$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$



        Or, we get:
        $$z_1^2+z_2^2+z_3^2= 3z_0^2$$






        share|cite|improve this answer









        $endgroup$



        Here, we clearly know (by rotation theorem):
        $$frac{z_2-z_0}{z_1-z_0} = frac{z_3-z_0}{z_2-z_0} = frac{z_1-z_0}{z_3-z_0}$$



        On Solving you'll get:
        $$z_1^2+z_2^2+z_3^2 = z_1z_2+z_2z_3+z_3z_1$$



        Further, we know:
        $$(z_1-z_0)+(z_2-z_0)+(z_3-z_0) = 0$$



        Transferring terms and squaring both sides we get (after using the prev. result):
        $$3(z_1^2+z_2^2+z_3^2) = 9z_0^2$$



        Or, we get:
        $$z_1^2+z_2^2+z_3^2= 3z_0^2$$







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 16 at 13:51









        Mayank M.Mayank M.

        493413




        493413























            2












            $begingroup$

            Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
            Id est, it's enough to prove that
            $$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
            $$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
            $$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
            $$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
            Can you end it now?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
              $endgroup$
              – Wojowu
              Jan 16 at 10:06










            • $begingroup$
              @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:11








            • 1




              $begingroup$
              I disagree that they are the same computations. Similar - perhaps, but not identical.
              $endgroup$
              – Wojowu
              Jan 16 at 10:14










            • $begingroup$
              @Wojowu I added something. See now.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:19
















            2












            $begingroup$

            Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
            Id est, it's enough to prove that
            $$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
            $$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
            $$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
            $$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
            Can you end it now?






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
              $endgroup$
              – Wojowu
              Jan 16 at 10:06










            • $begingroup$
              @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:11








            • 1




              $begingroup$
              I disagree that they are the same computations. Similar - perhaps, but not identical.
              $endgroup$
              – Wojowu
              Jan 16 at 10:14










            • $begingroup$
              @Wojowu I added something. See now.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:19














            2












            2








            2





            $begingroup$

            Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
            Id est, it's enough to prove that
            $$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
            $$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
            $$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
            $$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
            Can you end it now?






            share|cite|improve this answer











            $endgroup$



            Let $$z_1=z_0+r(costheta+isintheta),$$ $$z_2=z_0+r(cos(120^{circ}+theta)+isin(120^{circ}+theta))$$ and $$z_3=z_0+r(cos(240^{circ}+theta)+isin(240^{circ}+theta)).$$
            Id est, it's enough to prove that
            $$cos2theta+cos(240^{circ}+2theta)+cos(480^{circ}+2theta)=0,$$
            $$sin2theta+sin(240^{circ}+2theta)+sin(480^{circ}+2theta)=0,$$
            $$costheta+cos(120^{circ}+theta)+cos(240^{circ}+theta)=0$$ and
            $$sintheta+sin(120^{circ}+theta)+sin(240^{circ}+theta)=0.$$
            Can you end it now?







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 16 at 10:16

























            answered Jan 16 at 9:50









            Michael RozenbergMichael Rozenberg

            104k1892197




            104k1892197












            • $begingroup$
              "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
              $endgroup$
              – Wojowu
              Jan 16 at 10:06










            • $begingroup$
              @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:11








            • 1




              $begingroup$
              I disagree that they are the same computations. Similar - perhaps, but not identical.
              $endgroup$
              – Wojowu
              Jan 16 at 10:14










            • $begingroup$
              @Wojowu I added something. See now.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:19


















            • $begingroup$
              "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
              $endgroup$
              – Wojowu
              Jan 16 at 10:06










            • $begingroup$
              @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:11








            • 1




              $begingroup$
              I disagree that they are the same computations. Similar - perhaps, but not identical.
              $endgroup$
              – Wojowu
              Jan 16 at 10:14










            • $begingroup$
              @Wojowu I added something. See now.
              $endgroup$
              – Michael Rozenberg
              Jan 16 at 10:19
















            $begingroup$
            "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
            $endgroup$
            – Wojowu
            Jan 16 at 10:06




            $begingroup$
            "Let $z_0=0$" it deserves an explanation why you can assume that. The equation is not invariant under translations.
            $endgroup$
            – Wojowu
            Jan 16 at 10:06












            $begingroup$
            @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 10:11






            $begingroup$
            @Wojowu We can write $z_1=z_0+r(costheta+isintheta)$ and similar and we'll get the same computations. If you wish a can fix my post, but I think it's the same.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 10:11






            1




            1




            $begingroup$
            I disagree that they are the same computations. Similar - perhaps, but not identical.
            $endgroup$
            – Wojowu
            Jan 16 at 10:14




            $begingroup$
            I disagree that they are the same computations. Similar - perhaps, but not identical.
            $endgroup$
            – Wojowu
            Jan 16 at 10:14












            $begingroup$
            @Wojowu I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 10:19




            $begingroup$
            @Wojowu I added something. See now.
            $endgroup$
            – Michael Rozenberg
            Jan 16 at 10:19


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3075520%2fz-12z-22z-32-3z-02-if-z-1-z-2-z-3-be-the-vertices-of-an-equilateral-tr%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            How to fix TextFormField cause rebuild widget in Flutter

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith