Convergence of the series $sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$












1












$begingroup$


Study the convergence of the following series:



$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$



The absolute convergence is giving me hard times, eventually I was following this path, any tips?



$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
    $endgroup$
    – Mindlack
    Jan 21 at 21:14










  • $begingroup$
    @Mindlack how to show that fact? Thank you
    $endgroup$
    – F.inc
    Jan 21 at 21:24






  • 1




    $begingroup$
    If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
    $endgroup$
    – Mindlack
    Jan 21 at 21:26
















1












$begingroup$


Study the convergence of the following series:



$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$



The absolute convergence is giving me hard times, eventually I was following this path, any tips?



$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?










share|cite|improve this question









$endgroup$








  • 1




    $begingroup$
    Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
    $endgroup$
    – Mindlack
    Jan 21 at 21:14










  • $begingroup$
    @Mindlack how to show that fact? Thank you
    $endgroup$
    – F.inc
    Jan 21 at 21:24






  • 1




    $begingroup$
    If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
    $endgroup$
    – Mindlack
    Jan 21 at 21:26














1












1








1


1



$begingroup$


Study the convergence of the following series:



$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$



The absolute convergence is giving me hard times, eventually I was following this path, any tips?



$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?










share|cite|improve this question









$endgroup$




Study the convergence of the following series:



$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$



The absolute convergence is giving me hard times, eventually I was following this path, any tips?



$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?







real-analysis sequences-and-series convergence






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 21 at 21:11









F.incF.inc

315110




315110








  • 1




    $begingroup$
    Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
    $endgroup$
    – Mindlack
    Jan 21 at 21:14










  • $begingroup$
    @Mindlack how to show that fact? Thank you
    $endgroup$
    – F.inc
    Jan 21 at 21:24






  • 1




    $begingroup$
    If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
    $endgroup$
    – Mindlack
    Jan 21 at 21:26














  • 1




    $begingroup$
    Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
    $endgroup$
    – Mindlack
    Jan 21 at 21:14










  • $begingroup$
    @Mindlack how to show that fact? Thank you
    $endgroup$
    – F.inc
    Jan 21 at 21:24






  • 1




    $begingroup$
    If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
    $endgroup$
    – Mindlack
    Jan 21 at 21:26








1




1




$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14




$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14












$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24




$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24




1




1




$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26




$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26










1 Answer
1






active

oldest

votes


















1












$begingroup$

Since
$dfrac{x}{ln(x)}
to infty
$

as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$

as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.



Take
$f(x) = ln(x)$
to get the desired result.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082420%2fconvergence-of-the-series-sum-n-1-infty-frac-1nn-left1-frac1%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    Since
    $dfrac{x}{ln(x)}
    to infty
    $

    as
    $x to infty$,
    it follows that
    $dfrac{f(x)}{f(ln(x))}
    to infty
    $

    as
    $x to infty$
    where $f$ is any positive,
    strictly increasing,
    continuous,
    unbounded function.



    Take
    $f(x) = ln(x)$
    to get the desired result.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      Since
      $dfrac{x}{ln(x)}
      to infty
      $

      as
      $x to infty$,
      it follows that
      $dfrac{f(x)}{f(ln(x))}
      to infty
      $

      as
      $x to infty$
      where $f$ is any positive,
      strictly increasing,
      continuous,
      unbounded function.



      Take
      $f(x) = ln(x)$
      to get the desired result.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        Since
        $dfrac{x}{ln(x)}
        to infty
        $

        as
        $x to infty$,
        it follows that
        $dfrac{f(x)}{f(ln(x))}
        to infty
        $

        as
        $x to infty$
        where $f$ is any positive,
        strictly increasing,
        continuous,
        unbounded function.



        Take
        $f(x) = ln(x)$
        to get the desired result.






        share|cite|improve this answer









        $endgroup$



        Since
        $dfrac{x}{ln(x)}
        to infty
        $

        as
        $x to infty$,
        it follows that
        $dfrac{f(x)}{f(ln(x))}
        to infty
        $

        as
        $x to infty$
        where $f$ is any positive,
        strictly increasing,
        continuous,
        unbounded function.



        Take
        $f(x) = ln(x)$
        to get the desired result.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Jan 21 at 23:12









        marty cohenmarty cohen

        74.2k549128




        74.2k549128






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082420%2fconvergence-of-the-series-sum-n-1-infty-frac-1nn-left1-frac1%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]