Convergence of the series $sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$
$begingroup$
Study the convergence of the following series:
$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$
The absolute convergence is giving me hard times, eventually I was following this path, any tips?
$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?
real-analysis sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
Study the convergence of the following series:
$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$
The absolute convergence is giving me hard times, eventually I was following this path, any tips?
$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?
real-analysis sequences-and-series convergence
$endgroup$
1
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
1
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26
add a comment |
$begingroup$
Study the convergence of the following series:
$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$
The absolute convergence is giving me hard times, eventually I was following this path, any tips?
$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?
real-analysis sequences-and-series convergence
$endgroup$
Study the convergence of the following series:
$$sum_{n=1}^{infty} frac{(-1)^n}{n^{left(1+frac{1}{ln(ln(n))}right)}}$$
The absolute convergence is giving me hard times, eventually I was following this path, any tips?
$left( n^{left(1+frac{1}{ln(ln(n))}right)}right)^{-1} = left( e^{ln(n)+frac{1}{ln(ln(n))}ln(n)}right)^{-1} = left( e^{ln(n)left(1+frac{1}{ln(ln(n))}right)}right)^{-1} =,,,,$?
real-analysis sequences-and-series convergence
real-analysis sequences-and-series convergence
asked Jan 21 at 21:11
F.incF.inc
315110
315110
1
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
1
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26
add a comment |
1
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
1
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26
1
1
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
1
1
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Since
$dfrac{x}{ln(x)}
to infty
$
as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$
as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.
Take
$f(x) = ln(x)$
to get the desired result.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082420%2fconvergence-of-the-series-sum-n-1-infty-frac-1nn-left1-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since
$dfrac{x}{ln(x)}
to infty
$
as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$
as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.
Take
$f(x) = ln(x)$
to get the desired result.
$endgroup$
add a comment |
$begingroup$
Since
$dfrac{x}{ln(x)}
to infty
$
as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$
as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.
Take
$f(x) = ln(x)$
to get the desired result.
$endgroup$
add a comment |
$begingroup$
Since
$dfrac{x}{ln(x)}
to infty
$
as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$
as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.
Take
$f(x) = ln(x)$
to get the desired result.
$endgroup$
Since
$dfrac{x}{ln(x)}
to infty
$
as
$x to infty$,
it follows that
$dfrac{f(x)}{f(ln(x))}
to infty
$
as
$x to infty$
where $f$ is any positive,
strictly increasing,
continuous,
unbounded function.
Take
$f(x) = ln(x)$
to get the desired result.
answered Jan 21 at 23:12
marty cohenmarty cohen
74.2k549128
74.2k549128
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082420%2fconvergence-of-the-series-sum-n-1-infty-frac-1nn-left1-frac1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: $frac{ln{n}}{ln{ln{n}}} geq 2ln{ln{n}}$ when $n$ is large.
$endgroup$
– Mindlack
Jan 21 at 21:14
$begingroup$
@Mindlack how to show that fact? Thank you
$endgroup$
– F.inc
Jan 21 at 21:24
1
$begingroup$
If $x geq C >0$, $x geq 2(ln{x})^2$. So if $n geq e^C$, ...
$endgroup$
– Mindlack
Jan 21 at 21:26