Evaluating $lim_{x to 0} frac{a_1exp(-b_1x^2)}{sum_i a_iexp(-b_ix^2)}$
$begingroup$
I am looking for the solution of the following limit:
$$lim_{x to 0} frac{a_1exp(-b_1x^2)}{sum_i a_iexp(-b_ix^2)}$$
Since $lim_{yto0}exp(y) = 1$, is $frac{a_1}{sum_i a_i}$ really the correct solution for this problem?
limits proof-verification
$endgroup$
add a comment |
$begingroup$
I am looking for the solution of the following limit:
$$lim_{x to 0} frac{a_1exp(-b_1x^2)}{sum_i a_iexp(-b_ix^2)}$$
Since $lim_{yto0}exp(y) = 1$, is $frac{a_1}{sum_i a_i}$ really the correct solution for this problem?
limits proof-verification
$endgroup$
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32
add a comment |
$begingroup$
I am looking for the solution of the following limit:
$$lim_{x to 0} frac{a_1exp(-b_1x^2)}{sum_i a_iexp(-b_ix^2)}$$
Since $lim_{yto0}exp(y) = 1$, is $frac{a_1}{sum_i a_i}$ really the correct solution for this problem?
limits proof-verification
$endgroup$
I am looking for the solution of the following limit:
$$lim_{x to 0} frac{a_1exp(-b_1x^2)}{sum_i a_iexp(-b_ix^2)}$$
Since $lim_{yto0}exp(y) = 1$, is $frac{a_1}{sum_i a_i}$ really the correct solution for this problem?
limits proof-verification
limits proof-verification
edited Jan 21 at 20:26
Blue
48.9k870156
48.9k870156
asked Jan 21 at 15:26
Ben LBen L
114
114
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32
add a comment |
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Provided the limit exists for $f,g$, the latter being nonzero, we can say
$$lim limits_{x to c} frac{f(x)}{g(x)} = frac{lim limits_{x to c} f(x)}{lim limits_{x to c} g(x)}$$
Take
- $c = 0$
- $f(x) = a_1exp(-b_1x^2)$
$g(x) = sum limits_{i} a_iexp(-b_ix^2) = exp(-b_ix^2) sum limits_{i} a_i$.
Thus, clearly,
$$begin{align}
lim limits_{x to c} f(x) &= a_1 \
lim limits_{x to c} g(x) &= sum limits_{i} a_i
end{align}$$
ultimately verifying your result, if the limit of the denominator can be guaranteed to be nonzero.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082000%2fevaluating-lim-x-to-0-fraca-1-exp-b-1x2-sum-i-a-i-exp-b-ix2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Provided the limit exists for $f,g$, the latter being nonzero, we can say
$$lim limits_{x to c} frac{f(x)}{g(x)} = frac{lim limits_{x to c} f(x)}{lim limits_{x to c} g(x)}$$
Take
- $c = 0$
- $f(x) = a_1exp(-b_1x^2)$
$g(x) = sum limits_{i} a_iexp(-b_ix^2) = exp(-b_ix^2) sum limits_{i} a_i$.
Thus, clearly,
$$begin{align}
lim limits_{x to c} f(x) &= a_1 \
lim limits_{x to c} g(x) &= sum limits_{i} a_i
end{align}$$
ultimately verifying your result, if the limit of the denominator can be guaranteed to be nonzero.
$endgroup$
add a comment |
$begingroup$
Provided the limit exists for $f,g$, the latter being nonzero, we can say
$$lim limits_{x to c} frac{f(x)}{g(x)} = frac{lim limits_{x to c} f(x)}{lim limits_{x to c} g(x)}$$
Take
- $c = 0$
- $f(x) = a_1exp(-b_1x^2)$
$g(x) = sum limits_{i} a_iexp(-b_ix^2) = exp(-b_ix^2) sum limits_{i} a_i$.
Thus, clearly,
$$begin{align}
lim limits_{x to c} f(x) &= a_1 \
lim limits_{x to c} g(x) &= sum limits_{i} a_i
end{align}$$
ultimately verifying your result, if the limit of the denominator can be guaranteed to be nonzero.
$endgroup$
add a comment |
$begingroup$
Provided the limit exists for $f,g$, the latter being nonzero, we can say
$$lim limits_{x to c} frac{f(x)}{g(x)} = frac{lim limits_{x to c} f(x)}{lim limits_{x to c} g(x)}$$
Take
- $c = 0$
- $f(x) = a_1exp(-b_1x^2)$
$g(x) = sum limits_{i} a_iexp(-b_ix^2) = exp(-b_ix^2) sum limits_{i} a_i$.
Thus, clearly,
$$begin{align}
lim limits_{x to c} f(x) &= a_1 \
lim limits_{x to c} g(x) &= sum limits_{i} a_i
end{align}$$
ultimately verifying your result, if the limit of the denominator can be guaranteed to be nonzero.
$endgroup$
Provided the limit exists for $f,g$, the latter being nonzero, we can say
$$lim limits_{x to c} frac{f(x)}{g(x)} = frac{lim limits_{x to c} f(x)}{lim limits_{x to c} g(x)}$$
Take
- $c = 0$
- $f(x) = a_1exp(-b_1x^2)$
$g(x) = sum limits_{i} a_iexp(-b_ix^2) = exp(-b_ix^2) sum limits_{i} a_i$.
Thus, clearly,
$$begin{align}
lim limits_{x to c} f(x) &= a_1 \
lim limits_{x to c} g(x) &= sum limits_{i} a_i
end{align}$$
ultimately verifying your result, if the limit of the denominator can be guaranteed to be nonzero.
edited Jan 21 at 20:23
answered Jan 21 at 15:37
Eevee TrainerEevee Trainer
7,59721338
7,59721338
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082000%2fevaluating-lim-x-to-0-fraca-1-exp-b-1x2-sum-i-a-i-exp-b-ix2%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Yes that is correct.
$endgroup$
– lightxbulb
Jan 21 at 15:32