Numpy ValueError broadcasting list of tuples into an array












3














I'm observing some odd behaviour using numpy broadcasting. The problem is illustrated below, where running the first piece of code produces an error:



A = np.ones((10))
B = np.ones((10, 4))
C = np.ones((10))
np.asarray([A, B, C])

ValueError: could not broadcast input array from shape (10,4) into shape (10)


If I instead expand the dimensions of B, using B = np.expand_dims(B, axis=0), it will successfully create the array, but it now has (not surprisingly) the wrong dimensions:



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=float32)


Why does it fail to broadcast the first example, and how can I end up with an array like below (notice only double brackets around the second array)? Any feedback is much appreciated.



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)









share|improve this question
























  • np.hstack([A[:,None], B, C[:,None]])?
    – Divakar
    Nov 19 '18 at 14:38










  • This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
    – andkir
    Nov 19 '18 at 14:41












  • So, you need an object array with a shape of (3,)?
    – Divakar
    Nov 19 '18 at 14:42










  • Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
    – andkir
    Nov 19 '18 at 14:49






  • 1




    The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
    – hpaulj
    Nov 19 '18 at 17:15
















3














I'm observing some odd behaviour using numpy broadcasting. The problem is illustrated below, where running the first piece of code produces an error:



A = np.ones((10))
B = np.ones((10, 4))
C = np.ones((10))
np.asarray([A, B, C])

ValueError: could not broadcast input array from shape (10,4) into shape (10)


If I instead expand the dimensions of B, using B = np.expand_dims(B, axis=0), it will successfully create the array, but it now has (not surprisingly) the wrong dimensions:



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=float32)


Why does it fail to broadcast the first example, and how can I end up with an array like below (notice only double brackets around the second array)? Any feedback is much appreciated.



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)









share|improve this question
























  • np.hstack([A[:,None], B, C[:,None]])?
    – Divakar
    Nov 19 '18 at 14:38










  • This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
    – andkir
    Nov 19 '18 at 14:41












  • So, you need an object array with a shape of (3,)?
    – Divakar
    Nov 19 '18 at 14:42










  • Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
    – andkir
    Nov 19 '18 at 14:49






  • 1




    The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
    – hpaulj
    Nov 19 '18 at 17:15














3












3








3


2





I'm observing some odd behaviour using numpy broadcasting. The problem is illustrated below, where running the first piece of code produces an error:



A = np.ones((10))
B = np.ones((10, 4))
C = np.ones((10))
np.asarray([A, B, C])

ValueError: could not broadcast input array from shape (10,4) into shape (10)


If I instead expand the dimensions of B, using B = np.expand_dims(B, axis=0), it will successfully create the array, but it now has (not surprisingly) the wrong dimensions:



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=float32)


Why does it fail to broadcast the first example, and how can I end up with an array like below (notice only double brackets around the second array)? Any feedback is much appreciated.



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)









share|improve this question















I'm observing some odd behaviour using numpy broadcasting. The problem is illustrated below, where running the first piece of code produces an error:



A = np.ones((10))
B = np.ones((10, 4))
C = np.ones((10))
np.asarray([A, B, C])

ValueError: could not broadcast input array from shape (10,4) into shape (10)


If I instead expand the dimensions of B, using B = np.expand_dims(B, axis=0), it will successfully create the array, but it now has (not surprisingly) the wrong dimensions:



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=float32)


Why does it fail to broadcast the first example, and how can I end up with an array like below (notice only double brackets around the second array)? Any feedback is much appreciated.



array([array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]),
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]),
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)






python arrays numpy






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 19 '18 at 20:49









Ulrich Stern

5,08712350




5,08712350










asked Nov 19 '18 at 14:32









andkir

205




205












  • np.hstack([A[:,None], B, C[:,None]])?
    – Divakar
    Nov 19 '18 at 14:38










  • This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
    – andkir
    Nov 19 '18 at 14:41












  • So, you need an object array with a shape of (3,)?
    – Divakar
    Nov 19 '18 at 14:42










  • Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
    – andkir
    Nov 19 '18 at 14:49






  • 1




    The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
    – hpaulj
    Nov 19 '18 at 17:15


















  • np.hstack([A[:,None], B, C[:,None]])?
    – Divakar
    Nov 19 '18 at 14:38










  • This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
    – andkir
    Nov 19 '18 at 14:41












  • So, you need an object array with a shape of (3,)?
    – Divakar
    Nov 19 '18 at 14:42










  • Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
    – andkir
    Nov 19 '18 at 14:49






  • 1




    The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
    – hpaulj
    Nov 19 '18 at 17:15
















np.hstack([A[:,None], B, C[:,None]])?
– Divakar
Nov 19 '18 at 14:38




np.hstack([A[:,None], B, C[:,None]])?
– Divakar
Nov 19 '18 at 14:38












This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
– andkir
Nov 19 '18 at 14:41






This doesn't quite work as it creates (in the example above) a new array of shape (10,6) and not (3,)or (1,3) as I need.
– andkir
Nov 19 '18 at 14:41














So, you need an object array with a shape of (3,)?
– Divakar
Nov 19 '18 at 14:42




So, you need an object array with a shape of (3,)?
– Divakar
Nov 19 '18 at 14:42












Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
– andkir
Nov 19 '18 at 14:49




Yep, or to be precise, once I join (or append) 5 of these together I need them to be of shape (5, 3)
– andkir
Nov 19 '18 at 14:49




1




1




The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
– hpaulj
Nov 19 '18 at 17:15




The common first dimensions (10) in all the arrays sends np.array down a faulty path, trying to create a size (10,?) array. Keep in mind the default behavior for np.array is to create a multidimensional (numeric) array. Creating an object array is a fall back option. With this error yet another possibility.
– hpaulj
Nov 19 '18 at 17:15












1 Answer
1






active

oldest

votes


















3














Including, say, None prevents the broadcasting, so this workaround is an option:



np.asarray([A, B, C, None])[:-1]


Here the outcome:



array([array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)





share|improve this answer





















  • Worked beautifully, cheers! Learn something new every day.
    – andkir
    Nov 19 '18 at 19:25











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53376823%2fnumpy-valueerror-broadcasting-list-of-tuples-into-an-array%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














Including, say, None prevents the broadcasting, so this workaround is an option:



np.asarray([A, B, C, None])[:-1]


Here the outcome:



array([array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)





share|improve this answer





















  • Worked beautifully, cheers! Learn something new every day.
    – andkir
    Nov 19 '18 at 19:25
















3














Including, say, None prevents the broadcasting, so this workaround is an option:



np.asarray([A, B, C, None])[:-1]


Here the outcome:



array([array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)





share|improve this answer





















  • Worked beautifully, cheers! Learn something new every day.
    – andkir
    Nov 19 '18 at 19:25














3












3








3






Including, say, None prevents the broadcasting, so this workaround is an option:



np.asarray([A, B, C, None])[:-1]


Here the outcome:



array([array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)





share|improve this answer












Including, say, None prevents the broadcasting, so this workaround is an option:



np.asarray([A, B, C, None])[:-1]


Here the outcome:



array([array([ 1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.]),
array([[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.],
[ 1., 1., 1., 1.]]),
array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])], dtype=object)






share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 19 '18 at 16:40









Ulrich Stern

5,08712350




5,08712350












  • Worked beautifully, cheers! Learn something new every day.
    – andkir
    Nov 19 '18 at 19:25


















  • Worked beautifully, cheers! Learn something new every day.
    – andkir
    Nov 19 '18 at 19:25
















Worked beautifully, cheers! Learn something new every day.
– andkir
Nov 19 '18 at 19:25




Worked beautifully, cheers! Learn something new every day.
– andkir
Nov 19 '18 at 19:25


















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53376823%2fnumpy-valueerror-broadcasting-list-of-tuples-into-an-array%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules