Differential equation $2x^4yy'+y^4 = 4x^6$












0












$begingroup$


I have differential equation


$2x^4yy'+y^4 = 4x^6$



How to find real parameter $m$ for which, when we introduce substitution $y=z^m$, given equation becomes first order homogeneous differential equation?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I have differential equation


    $2x^4yy'+y^4 = 4x^6$



    How to find real parameter $m$ for which, when we introduce substitution $y=z^m$, given equation becomes first order homogeneous differential equation?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I have differential equation


      $2x^4yy'+y^4 = 4x^6$



      How to find real parameter $m$ for which, when we introduce substitution $y=z^m$, given equation becomes first order homogeneous differential equation?










      share|cite|improve this question









      $endgroup$




      I have differential equation


      $2x^4yy'+y^4 = 4x^6$



      How to find real parameter $m$ for which, when we introduce substitution $y=z^m$, given equation becomes first order homogeneous differential equation?







      real-analysis ordinary-differential-equations integro-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 26 at 0:30









      Nikola MijuškovićNikola Mijušković

      274




      274






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          $$
          2x^4y y'+y^4=4x^6tag 1
          $$

          We write
          $$
          x^4(y^2)'+(y^2)^2=4x^6
          $$

          Set $w=y^2$. Hence
          $$
          x^4w'+w^2=4x^6tag 2
          $$

          This equation has partial solution $w=-4x^3$. So we set $w=-4x^3z$ and (2) becomes
          $$
          x(1+3z-4z^2+xz')=0
          $$

          Hence
          $$
          z'=(4z^2-3z-1)/x
          $$

          or
          $$
          frac{dz}{4z^2-3z-1}=frac{dx}{x}
          $$

          or integrating
          $$
          frac{1}{5}log(1-z)-frac{1}{5}log(1+4z)=c+log x
          $$

          or
          $$
          z=frac{1-Ax^5}{1+4Ax^5}textrm{, }A=const
          $$

          Hence
          $$
          w=-4x^3frac{1-Ax^5}{1+4Ax^5}
          $$

          and finaly
          $$
          y=y(x)=2sqrt{x^3frac{Ax^5-1}{4x^5+1}}textrm{, }A=const
          $$






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Ans: $frac{3}{2}$



            we have,
            $2x^4yy'+y^4 = 4x^6$



            rearranging,
            $y'=frac{4x^6-y^4}{2x^4y}$



            now
            substituting $$y=z^m$$
            $$dy=mz^{m-1}dz$$
            $$z'=frac{4x^6-z^{4m}}{mz^{2m-1}x^4}$$



            Now for $m=frac32$ equation is homogeneous.






            share|cite|improve this answer









            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087771%2fdifferential-equation-2x4yyy4-4x6%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              $$
              2x^4y y'+y^4=4x^6tag 1
              $$

              We write
              $$
              x^4(y^2)'+(y^2)^2=4x^6
              $$

              Set $w=y^2$. Hence
              $$
              x^4w'+w^2=4x^6tag 2
              $$

              This equation has partial solution $w=-4x^3$. So we set $w=-4x^3z$ and (2) becomes
              $$
              x(1+3z-4z^2+xz')=0
              $$

              Hence
              $$
              z'=(4z^2-3z-1)/x
              $$

              or
              $$
              frac{dz}{4z^2-3z-1}=frac{dx}{x}
              $$

              or integrating
              $$
              frac{1}{5}log(1-z)-frac{1}{5}log(1+4z)=c+log x
              $$

              or
              $$
              z=frac{1-Ax^5}{1+4Ax^5}textrm{, }A=const
              $$

              Hence
              $$
              w=-4x^3frac{1-Ax^5}{1+4Ax^5}
              $$

              and finaly
              $$
              y=y(x)=2sqrt{x^3frac{Ax^5-1}{4x^5+1}}textrm{, }A=const
              $$






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                $$
                2x^4y y'+y^4=4x^6tag 1
                $$

                We write
                $$
                x^4(y^2)'+(y^2)^2=4x^6
                $$

                Set $w=y^2$. Hence
                $$
                x^4w'+w^2=4x^6tag 2
                $$

                This equation has partial solution $w=-4x^3$. So we set $w=-4x^3z$ and (2) becomes
                $$
                x(1+3z-4z^2+xz')=0
                $$

                Hence
                $$
                z'=(4z^2-3z-1)/x
                $$

                or
                $$
                frac{dz}{4z^2-3z-1}=frac{dx}{x}
                $$

                or integrating
                $$
                frac{1}{5}log(1-z)-frac{1}{5}log(1+4z)=c+log x
                $$

                or
                $$
                z=frac{1-Ax^5}{1+4Ax^5}textrm{, }A=const
                $$

                Hence
                $$
                w=-4x^3frac{1-Ax^5}{1+4Ax^5}
                $$

                and finaly
                $$
                y=y(x)=2sqrt{x^3frac{Ax^5-1}{4x^5+1}}textrm{, }A=const
                $$






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $$
                  2x^4y y'+y^4=4x^6tag 1
                  $$

                  We write
                  $$
                  x^4(y^2)'+(y^2)^2=4x^6
                  $$

                  Set $w=y^2$. Hence
                  $$
                  x^4w'+w^2=4x^6tag 2
                  $$

                  This equation has partial solution $w=-4x^3$. So we set $w=-4x^3z$ and (2) becomes
                  $$
                  x(1+3z-4z^2+xz')=0
                  $$

                  Hence
                  $$
                  z'=(4z^2-3z-1)/x
                  $$

                  or
                  $$
                  frac{dz}{4z^2-3z-1}=frac{dx}{x}
                  $$

                  or integrating
                  $$
                  frac{1}{5}log(1-z)-frac{1}{5}log(1+4z)=c+log x
                  $$

                  or
                  $$
                  z=frac{1-Ax^5}{1+4Ax^5}textrm{, }A=const
                  $$

                  Hence
                  $$
                  w=-4x^3frac{1-Ax^5}{1+4Ax^5}
                  $$

                  and finaly
                  $$
                  y=y(x)=2sqrt{x^3frac{Ax^5-1}{4x^5+1}}textrm{, }A=const
                  $$






                  share|cite|improve this answer









                  $endgroup$



                  $$
                  2x^4y y'+y^4=4x^6tag 1
                  $$

                  We write
                  $$
                  x^4(y^2)'+(y^2)^2=4x^6
                  $$

                  Set $w=y^2$. Hence
                  $$
                  x^4w'+w^2=4x^6tag 2
                  $$

                  This equation has partial solution $w=-4x^3$. So we set $w=-4x^3z$ and (2) becomes
                  $$
                  x(1+3z-4z^2+xz')=0
                  $$

                  Hence
                  $$
                  z'=(4z^2-3z-1)/x
                  $$

                  or
                  $$
                  frac{dz}{4z^2-3z-1}=frac{dx}{x}
                  $$

                  or integrating
                  $$
                  frac{1}{5}log(1-z)-frac{1}{5}log(1+4z)=c+log x
                  $$

                  or
                  $$
                  z=frac{1-Ax^5}{1+4Ax^5}textrm{, }A=const
                  $$

                  Hence
                  $$
                  w=-4x^3frac{1-Ax^5}{1+4Ax^5}
                  $$

                  and finaly
                  $$
                  y=y(x)=2sqrt{x^3frac{Ax^5-1}{4x^5+1}}textrm{, }A=const
                  $$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 26 at 1:27









                  Nikos Bagis Nikos Bagis

                  2,482616




                  2,482616























                      1












                      $begingroup$

                      Ans: $frac{3}{2}$



                      we have,
                      $2x^4yy'+y^4 = 4x^6$



                      rearranging,
                      $y'=frac{4x^6-y^4}{2x^4y}$



                      now
                      substituting $$y=z^m$$
                      $$dy=mz^{m-1}dz$$
                      $$z'=frac{4x^6-z^{4m}}{mz^{2m-1}x^4}$$



                      Now for $m=frac32$ equation is homogeneous.






                      share|cite|improve this answer









                      $endgroup$


















                        1












                        $begingroup$

                        Ans: $frac{3}{2}$



                        we have,
                        $2x^4yy'+y^4 = 4x^6$



                        rearranging,
                        $y'=frac{4x^6-y^4}{2x^4y}$



                        now
                        substituting $$y=z^m$$
                        $$dy=mz^{m-1}dz$$
                        $$z'=frac{4x^6-z^{4m}}{mz^{2m-1}x^4}$$



                        Now for $m=frac32$ equation is homogeneous.






                        share|cite|improve this answer









                        $endgroup$
















                          1












                          1








                          1





                          $begingroup$

                          Ans: $frac{3}{2}$



                          we have,
                          $2x^4yy'+y^4 = 4x^6$



                          rearranging,
                          $y'=frac{4x^6-y^4}{2x^4y}$



                          now
                          substituting $$y=z^m$$
                          $$dy=mz^{m-1}dz$$
                          $$z'=frac{4x^6-z^{4m}}{mz^{2m-1}x^4}$$



                          Now for $m=frac32$ equation is homogeneous.






                          share|cite|improve this answer









                          $endgroup$



                          Ans: $frac{3}{2}$



                          we have,
                          $2x^4yy'+y^4 = 4x^6$



                          rearranging,
                          $y'=frac{4x^6-y^4}{2x^4y}$



                          now
                          substituting $$y=z^m$$
                          $$dy=mz^{m-1}dz$$
                          $$z'=frac{4x^6-z^{4m}}{mz^{2m-1}x^4}$$



                          Now for $m=frac32$ equation is homogeneous.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered Jan 26 at 1:17









                          TanmayTanmay

                          444




                          444






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3087771%2fdifferential-equation-2x4yyy4-4x6%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              MongoDB - Not Authorized To Execute Command

                              Npm cannot find a required file even through it is in the searched directory

                              in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith