Finding an $epsilon-delta$ proof for a multivariable limit.












2












$begingroup$


Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$



I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)



So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$



I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$



Got stuck here and not sure if my approach is correct.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
    $endgroup$
    – Ted Shifrin
    Jan 28 at 19:16
















2












$begingroup$


Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$



I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)



So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$



I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$



Got stuck here and not sure if my approach is correct.










share|cite|improve this question











$endgroup$












  • $begingroup$
    Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
    $endgroup$
    – Ted Shifrin
    Jan 28 at 19:16














2












2








2





$begingroup$


Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$



I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)



So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$



I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$



Got stuck here and not sure if my approach is correct.










share|cite|improve this question











$endgroup$




Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$



I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)



So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$



I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$



Got stuck here and not sure if my approach is correct.







real-analysis limits multivariable-calculus epsilon-delta






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 28 at 17:57









MathOverview

8,96243164




8,96243164










asked Jan 28 at 17:49









mikemike

564




564












  • $begingroup$
    Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
    $endgroup$
    – Ted Shifrin
    Jan 28 at 19:16


















  • $begingroup$
    Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
    $endgroup$
    – Ted Shifrin
    Jan 28 at 19:16
















$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16




$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16










1 Answer
1






active

oldest

votes


















1












$begingroup$

The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank a lot for your answer. It made it very simple :)
    $endgroup$
    – mike
    Jan 28 at 22:05












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091176%2ffinding-an-epsilon-delta-proof-for-a-multivariable-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank a lot for your answer. It made it very simple :)
    $endgroup$
    – mike
    Jan 28 at 22:05
















1












$begingroup$

The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Thank a lot for your answer. It made it very simple :)
    $endgroup$
    – mike
    Jan 28 at 22:05














1












1








1





$begingroup$

The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$






share|cite|improve this answer









$endgroup$



The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 28 at 20:04









Christian BlatterChristian Blatter

176k8115327




176k8115327












  • $begingroup$
    Thank a lot for your answer. It made it very simple :)
    $endgroup$
    – mike
    Jan 28 at 22:05


















  • $begingroup$
    Thank a lot for your answer. It made it very simple :)
    $endgroup$
    – mike
    Jan 28 at 22:05
















$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05




$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091176%2ffinding-an-epsilon-delta-proof-for-a-multivariable-limit%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

Npm cannot find a required file even through it is in the searched directory

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith