Finding an $epsilon-delta$ proof for a multivariable limit.
$begingroup$
Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$
I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)
So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$
I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$
Got stuck here and not sure if my approach is correct.
real-analysis limits multivariable-calculus epsilon-delta
$endgroup$
add a comment |
$begingroup$
Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$
I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)
So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$
I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$
Got stuck here and not sure if my approach is correct.
real-analysis limits multivariable-calculus epsilon-delta
$endgroup$
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16
add a comment |
$begingroup$
Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$
I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)
So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$
I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$
Got stuck here and not sure if my approach is correct.
real-analysis limits multivariable-calculus epsilon-delta
$endgroup$
Suppose $f:mathbb{R}^2rightarrow mathbb{R}$ is defined as $$(x,y) longmapsto
left{
begin{array}{cl}
dfrac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2} & mbox {if } (x,y) neq (0,0) \
\
0 & mbox {if } (x,y) = (0,0)
end{array}
right.
$$
I have shown that $f$ is continuous at $(0,0)$ using polar coordinates, but I am really trying to improve my $epsilon-delta$ proofs for such limits. I always end up getting confused with the inequalities. (Sorry if the question is a bit repetitive here)
So for $epsilon > 0$ I need to find a $delta$ such that $|(x,y)| =sqrt{x^2 + y^2} < delta$ implies $|f(x,y)| < epsilon$
I have tried to work backwards using the inequality $(x^2+y^2)^2 geq 4x^2y^2$
$$begin{align*}
left|frac{4x^2y^3 +x^4y - y^5}{(x^2+y^2)^2}right|&=left|frac{4x^2y^3}{(x^2+y^2)^2} + frac{x^4 y}{(x^2+y^2)^2} - frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{(x^2+y^2)^2}right| + left|frac{x^4 y}{(x^2+y^2)^2}right| + left|frac{y^5}{(x^2+y^2)^2}right|\
&leqleft|frac{4x^2y^3}{4x^2y^2}right| + left|frac{x^4 y}{4x^2y^2}right| + left|frac{y^5}{4x^2y^2}right|\
&= left|yright| + left|frac{x^2}{4y}right| + left|frac{y^3}{4x^2}right|
end{align*}$$
Got stuck here and not sure if my approach is correct.
real-analysis limits multivariable-calculus epsilon-delta
real-analysis limits multivariable-calculus epsilon-delta
edited Jan 28 at 17:57


MathOverview
8,96243164
8,96243164
asked Jan 28 at 17:49
mikemike
564
564
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16
add a comment |
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$
$endgroup$
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091176%2ffinding-an-epsilon-delta-proof-for-a-multivariable-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$
$endgroup$
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
add a comment |
$begingroup$
The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$
$endgroup$
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
add a comment |
$begingroup$
The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$
$endgroup$
The essential point is that $r:=sqrt{x^2+y^2}$ governs the distance from some point $(x,y)$ to $(0,0)$. In particular $|x|leq sqrt{x^2+y^2}=r$, and similarly $|y|leq r$. It follows that
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq(4+1+1){r^5over r^4}=6r .tag{1}$$
Given an $epsilon>0$ choose $delta:={epsilonover6}$. If $|(x,y)|=r<delta$ then, according to $(1)$, we have
$$left|{4x^2y^3+x^4y-y^5over(x^2+y^2)^2}right|leq6 r<6delta=epsilon .$$
answered Jan 28 at 20:04


Christian BlatterChristian Blatter
176k8115327
176k8115327
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
add a comment |
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
$begingroup$
Thank a lot for your answer. It made it very simple :)
$endgroup$
– mike
Jan 28 at 22:05
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091176%2ffinding-an-epsilon-delta-proof-for-a-multivariable-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Having $x$ and $y$ in the denominator is going to cause you horrible problems with things blowing up. Just use the fact that $|x|$ and $|y|$ are both $le (x^2+y^2)^{1/2}$.
$endgroup$
– Ted Shifrin
Jan 28 at 19:16