Proving Trigonometry Identities $tan(frac{1}{2}x+45)+cot(frac{1}{2}x+45)=2sec x$












0












$begingroup$


How do i prove that




$tan(frac{1}{2}x+45)+cot(frac{1}{2}x+45)=2sec x$?




I managed to arrive at



$$frac{2 sec^2 (frac{1}{2}x)}{1- tan^2 (frac{1}{2}x)}$$



but I got stuck here. Any help is appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
    $endgroup$
    – user10354138
    Jan 23 at 15:38


















0












$begingroup$


How do i prove that




$tan(frac{1}{2}x+45)+cot(frac{1}{2}x+45)=2sec x$?




I managed to arrive at



$$frac{2 sec^2 (frac{1}{2}x)}{1- tan^2 (frac{1}{2}x)}$$



but I got stuck here. Any help is appreciated.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
    $endgroup$
    – user10354138
    Jan 23 at 15:38
















0












0








0





$begingroup$


How do i prove that




$tan(frac{1}{2}x+45)+cot(frac{1}{2}x+45)=2sec x$?




I managed to arrive at



$$frac{2 sec^2 (frac{1}{2}x)}{1- tan^2 (frac{1}{2}x)}$$



but I got stuck here. Any help is appreciated.










share|cite|improve this question











$endgroup$




How do i prove that




$tan(frac{1}{2}x+45)+cot(frac{1}{2}x+45)=2sec x$?




I managed to arrive at



$$frac{2 sec^2 (frac{1}{2}x)}{1- tan^2 (frac{1}{2}x)}$$



but I got stuck here. Any help is appreciated.







trigonometry






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 23 at 15:47









mrtaurho

5,98551641




5,98551641










asked Jan 23 at 15:34









XingXiroXingXiro

12




12








  • 1




    $begingroup$
    Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
    $endgroup$
    – user10354138
    Jan 23 at 15:38
















  • 1




    $begingroup$
    Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
    $endgroup$
    – user10354138
    Jan 23 at 15:38










1




1




$begingroup$
Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
$endgroup$
– user10354138
Jan 23 at 15:38






$begingroup$
Be careful! 45 (radians) is not $45^circ$. Multiply top and bottom by $cos^2(x/2)$ and use double angle formula on the denominator.
$endgroup$
– user10354138
Jan 23 at 15:38












2 Answers
2






active

oldest

votes


















1












$begingroup$

Because
$$tanleft(frac{x}{2}+45^{circ}right)+cotleft(frac{x}{2}+45^{circ}right)=frac{1}{sinleft(frac{x}{2}+45^{circ}right)cosleft(frac{x}{2}+45^{circ}right)}=frac{2}{sin(x+90^{circ})}=frac{2}{cos{x}}.$$






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    begin{align*}
    tanleft(frac{1}{2}x+45^{circ}right)+cotleft(frac{1}{2}x+45^{circ}right)&=tanleft(frac{1}{2}x+45^{circ}right)+frac1{tanleft(frac{1}{2}x+45^{circ}right)}\
    &=frac{1+tan^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
    &=frac{sec^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
    &=frac{sec(frac{1}{2}x+45^{circ})}{sin(frac{1}{2}x+45^{circ})}\
    &=frac{2}{2sin(frac{1}{2}x+45^{circ})cos(frac{1}{2}x+45^{circ})}\
    &=frac{2}{sin(x+90^{circ})}\
    &=frac{2}{cos(x)}\
    &=2sec x
    end{align*}






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084629%2fproving-trigonometry-identities-tan-frac12x45-cot-frac12x45-2-s%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      Because
      $$tanleft(frac{x}{2}+45^{circ}right)+cotleft(frac{x}{2}+45^{circ}right)=frac{1}{sinleft(frac{x}{2}+45^{circ}right)cosleft(frac{x}{2}+45^{circ}right)}=frac{2}{sin(x+90^{circ})}=frac{2}{cos{x}}.$$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        Because
        $$tanleft(frac{x}{2}+45^{circ}right)+cotleft(frac{x}{2}+45^{circ}right)=frac{1}{sinleft(frac{x}{2}+45^{circ}right)cosleft(frac{x}{2}+45^{circ}right)}=frac{2}{sin(x+90^{circ})}=frac{2}{cos{x}}.$$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          Because
          $$tanleft(frac{x}{2}+45^{circ}right)+cotleft(frac{x}{2}+45^{circ}right)=frac{1}{sinleft(frac{x}{2}+45^{circ}right)cosleft(frac{x}{2}+45^{circ}right)}=frac{2}{sin(x+90^{circ})}=frac{2}{cos{x}}.$$






          share|cite|improve this answer









          $endgroup$



          Because
          $$tanleft(frac{x}{2}+45^{circ}right)+cotleft(frac{x}{2}+45^{circ}right)=frac{1}{sinleft(frac{x}{2}+45^{circ}right)cosleft(frac{x}{2}+45^{circ}right)}=frac{2}{sin(x+90^{circ})}=frac{2}{cos{x}}.$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 23 at 15:45









          Michael RozenbergMichael Rozenberg

          108k1895200




          108k1895200























              1












              $begingroup$

              begin{align*}
              tanleft(frac{1}{2}x+45^{circ}right)+cotleft(frac{1}{2}x+45^{circ}right)&=tanleft(frac{1}{2}x+45^{circ}right)+frac1{tanleft(frac{1}{2}x+45^{circ}right)}\
              &=frac{1+tan^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
              &=frac{sec^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
              &=frac{sec(frac{1}{2}x+45^{circ})}{sin(frac{1}{2}x+45^{circ})}\
              &=frac{2}{2sin(frac{1}{2}x+45^{circ})cos(frac{1}{2}x+45^{circ})}\
              &=frac{2}{sin(x+90^{circ})}\
              &=frac{2}{cos(x)}\
              &=2sec x
              end{align*}






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                begin{align*}
                tanleft(frac{1}{2}x+45^{circ}right)+cotleft(frac{1}{2}x+45^{circ}right)&=tanleft(frac{1}{2}x+45^{circ}right)+frac1{tanleft(frac{1}{2}x+45^{circ}right)}\
                &=frac{1+tan^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                &=frac{sec^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                &=frac{sec(frac{1}{2}x+45^{circ})}{sin(frac{1}{2}x+45^{circ})}\
                &=frac{2}{2sin(frac{1}{2}x+45^{circ})cos(frac{1}{2}x+45^{circ})}\
                &=frac{2}{sin(x+90^{circ})}\
                &=frac{2}{cos(x)}\
                &=2sec x
                end{align*}






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  begin{align*}
                  tanleft(frac{1}{2}x+45^{circ}right)+cotleft(frac{1}{2}x+45^{circ}right)&=tanleft(frac{1}{2}x+45^{circ}right)+frac1{tanleft(frac{1}{2}x+45^{circ}right)}\
                  &=frac{1+tan^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                  &=frac{sec^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                  &=frac{sec(frac{1}{2}x+45^{circ})}{sin(frac{1}{2}x+45^{circ})}\
                  &=frac{2}{2sin(frac{1}{2}x+45^{circ})cos(frac{1}{2}x+45^{circ})}\
                  &=frac{2}{sin(x+90^{circ})}\
                  &=frac{2}{cos(x)}\
                  &=2sec x
                  end{align*}






                  share|cite|improve this answer









                  $endgroup$



                  begin{align*}
                  tanleft(frac{1}{2}x+45^{circ}right)+cotleft(frac{1}{2}x+45^{circ}right)&=tanleft(frac{1}{2}x+45^{circ}right)+frac1{tanleft(frac{1}{2}x+45^{circ}right)}\
                  &=frac{1+tan^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                  &=frac{sec^2(frac{1}{2}x+45^{circ})}{tan(frac{1}{2}x+45^{circ})}\
                  &=frac{sec(frac{1}{2}x+45^{circ})}{sin(frac{1}{2}x+45^{circ})}\
                  &=frac{2}{2sin(frac{1}{2}x+45^{circ})cos(frac{1}{2}x+45^{circ})}\
                  &=frac{2}{sin(x+90^{circ})}\
                  &=frac{2}{cos(x)}\
                  &=2sec x
                  end{align*}







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 23 at 16:05









                  Thomas ShelbyThomas Shelby

                  4,0442625




                  4,0442625






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084629%2fproving-trigonometry-identities-tan-frac12x45-cot-frac12x45-2-s%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      Npm cannot find a required file even through it is in the searched directory

                      How to fix TextFormField cause rebuild widget in Flutter