Trig Integral Inequality












1












$begingroup$


Show that if $f$ is Riemann integrable on $[a,b]$, then



$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$



I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's $sin(x)^{2}+cos(x)^{2}$ equal to?
    $endgroup$
    – Brian Borchers
    Jan 21 at 16:13










  • $begingroup$
    The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
    $endgroup$
    – Song
    Jan 21 at 16:14


















1












$begingroup$


Show that if $f$ is Riemann integrable on $[a,b]$, then



$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$



I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!










share|cite|improve this question











$endgroup$












  • $begingroup$
    What's $sin(x)^{2}+cos(x)^{2}$ equal to?
    $endgroup$
    – Brian Borchers
    Jan 21 at 16:13










  • $begingroup$
    The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
    $endgroup$
    – Song
    Jan 21 at 16:14
















1












1








1





$begingroup$


Show that if $f$ is Riemann integrable on $[a,b]$, then



$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$



I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!










share|cite|improve this question











$endgroup$




Show that if $f$ is Riemann integrable on $[a,b]$, then



$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$



I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!







real-analysis integration inequality cauchy-schwarz-inequality holder-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 21 at 16:54







ECON10105

















asked Jan 21 at 16:11









ECON10105ECON10105

62




62












  • $begingroup$
    What's $sin(x)^{2}+cos(x)^{2}$ equal to?
    $endgroup$
    – Brian Borchers
    Jan 21 at 16:13










  • $begingroup$
    The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
    $endgroup$
    – Song
    Jan 21 at 16:14




















  • $begingroup$
    What's $sin(x)^{2}+cos(x)^{2}$ equal to?
    $endgroup$
    – Brian Borchers
    Jan 21 at 16:13










  • $begingroup$
    The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
    $endgroup$
    – Song
    Jan 21 at 16:14


















$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13




$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13












$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14






$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14












2 Answers
2






active

oldest

votes


















1












$begingroup$

By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$






share|cite|improve this answer









$endgroup$





















    0












    $begingroup$

    1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.



    2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.



    3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$



    4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$



    5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.






    share|cite|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082057%2ftrig-integral-inequality%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      1












      $begingroup$

      By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
      $$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
      Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$






      share|cite|improve this answer









      $endgroup$


















        1












        $begingroup$

        By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
        $$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
        Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$






        share|cite|improve this answer









        $endgroup$
















          1












          1








          1





          $begingroup$

          By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
          $$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
          Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$






          share|cite|improve this answer









          $endgroup$



          By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
          $$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
          Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 21 at 17:06









          Michael RozenbergMichael Rozenberg

          107k1894199




          107k1894199























              0












              $begingroup$

              1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.



              2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.



              3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$



              4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$



              5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.






              share|cite|improve this answer









              $endgroup$


















                0












                $begingroup$

                1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.



                2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.



                3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$



                4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$



                5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.






                share|cite|improve this answer









                $endgroup$
















                  0












                  0








                  0





                  $begingroup$

                  1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.



                  2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.



                  3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$



                  4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$



                  5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.






                  share|cite|improve this answer









                  $endgroup$



                  1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.



                  2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.



                  3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$



                  4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$



                  5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 21 at 17:11









                  JustDroppedInJustDroppedIn

                  2,153420




                  2,153420






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082057%2ftrig-integral-inequality%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith