Trig Integral Inequality
$begingroup$
Show that if $f$ is Riemann integrable on $[a,b]$, then
$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$
I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!
real-analysis integration inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
add a comment |
$begingroup$
Show that if $f$ is Riemann integrable on $[a,b]$, then
$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$
I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!
real-analysis integration inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14
add a comment |
$begingroup$
Show that if $f$ is Riemann integrable on $[a,b]$, then
$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$
I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!
real-analysis integration inequality cauchy-schwarz-inequality holder-inequality
$endgroup$
Show that if $f$ is Riemann integrable on $[a,b]$, then
$$left(int_{a}^{b}f(x)sin x dxright)^2+left(int_{a}^{b}f(x)cos x dxright)^2le(b-a)int_{a}^{b}f^2(x) dx.$$
I know I need to use the Hölder Inequality in some form, but I am not sure how to rewrite the left side of the equation. I know I can rewrite the right side as $left(int_{a}^{b}sin^2x+cos^2x dxright)left(int_{a}^{b}f^2(x) dxright)$, but I'm struggling to invoke any established inequalities because of the addition. Thanks for any shared insights!
real-analysis integration inequality cauchy-schwarz-inequality holder-inequality
real-analysis integration inequality cauchy-schwarz-inequality holder-inequality
edited Jan 21 at 16:54
ECON10105
asked Jan 21 at 16:11
ECON10105ECON10105
62
62
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14
add a comment |
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$
$endgroup$
add a comment |
$begingroup$
1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.
2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.
3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$
4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$
5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082057%2ftrig-integral-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$
$endgroup$
add a comment |
$begingroup$
By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$
$endgroup$
add a comment |
$begingroup$
By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$
$endgroup$
By C-S $$(b-a)intlimits_a^bf(x)^2dx=intlimits_a^bf(x)^2sin^2xdxint_a^b1dx+intlimits_a^bf(x)^2cos^2xdxint_a^b1dxgeq$$
$$geqleft(intlimits_a^bf(x)sin{x}dxright)^2+left(intlimits_a^bf(x)cos{x}dxright)^2.$$
Actually, $f^2(x)=f(f(x))$ and $f(x)^2=left(f(x)right)^2.$
answered Jan 21 at 17:06
Michael RozenbergMichael Rozenberg
107k1894199
107k1894199
add a comment |
add a comment |
$begingroup$
1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.
2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.
3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$
4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$
5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.
$endgroup$
add a comment |
$begingroup$
1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.
2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.
3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$
4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$
5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.
$endgroup$
add a comment |
$begingroup$
1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.
2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.
3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$
4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$
5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.
$endgroup$
1.Prove that $<f,g>:=int_a^bf(x)g(x)dx$ is an inner product.
2.Observe that the norm it induces is $|f|=big{(}int_a^bf^2(x)dxbig{)}^{1/2}$.
3.Rewrite your inequality as $<f,sin>^2+<f,cos>^2leq(b-a)cdot|f|^2$
4.Using Cauchy-Schwarz, show that $<f,sin>^2+<f,cos>^2 leq |f|^2(|sin|^2+|cos|^2)$
5.Observe that $|sin|^2+|cos|^2=int_a^bsin(x)^2dx+int_a^bcos(x)^2dx=int_a^b1dx=b-a$.
answered Jan 21 at 17:11


JustDroppedInJustDroppedIn
2,153420
2,153420
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082057%2ftrig-integral-inequality%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What's $sin(x)^{2}+cos(x)^{2}$ equal to?
$endgroup$
– Brian Borchers
Jan 21 at 16:13
$begingroup$
The direction of the inequality should be reversed. It almost immdiately follows from Caychy-Schwarz.
$endgroup$
– Song
Jan 21 at 16:14