Absolute error and inverse trig functions












0












$begingroup$


I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
$$sin alpha = 0.503 pm 0.08.$$



How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
    $$sin alpha = 0.503 pm 0.08.$$



    How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
      $$sin alpha = 0.503 pm 0.08.$$



      How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?










      share|cite|improve this question









      $endgroup$




      I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
      $$sin alpha = 0.503 pm 0.08.$$



      How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?







      trigonometry mathematical-physics error-propagation






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Feb 2 at 21:58









      A. LavieA. Lavie

      274




      274






















          1 Answer
          1






          active

          oldest

          votes


















          2












          $begingroup$

          We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
          $$alpha=30.3^circ pm 5.32^circ$$



          In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
          $$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$






          share|cite|improve this answer









          $endgroup$














            Your Answer








            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097859%2fabsolute-error-and-inverse-trig-functions%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
            $$alpha=30.3^circ pm 5.32^circ$$



            In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
            $$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
              $$alpha=30.3^circ pm 5.32^circ$$



              In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
              $$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
                $$alpha=30.3^circ pm 5.32^circ$$



                In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
                $$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$






                share|cite|improve this answer









                $endgroup$



                We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
                $$alpha=30.3^circ pm 5.32^circ$$



                In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
                $$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 2 at 22:12









                Peter ForemanPeter Foreman

                7,3831319




                7,3831319






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097859%2fabsolute-error-and-inverse-trig-functions%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    Npm cannot find a required file even through it is in the searched directory