Absolute error and inverse trig functions
$begingroup$
I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
$$sin alpha = 0.503 pm 0.08.$$
How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?
trigonometry mathematical-physics error-propagation
$endgroup$
add a comment |
$begingroup$
I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
$$sin alpha = 0.503 pm 0.08.$$
How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?
trigonometry mathematical-physics error-propagation
$endgroup$
add a comment |
$begingroup$
I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
$$sin alpha = 0.503 pm 0.08.$$
How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?
trigonometry mathematical-physics error-propagation
$endgroup$
I am doing a physics project, and am using the sine law to find the angle of my final momentum vector. Using absolute error arithmetic (i.e. add absolute error when adding/subtracting, add relative error when multiplying/dividing), I have arrived at the expression
$$sin alpha = 0.503 pm 0.08.$$
How do I find the absolute error $x$ for my final value of $alpha = 30^circ pm x$? If there is a rule for this (which I cannot seem to find on the internet), does it hold for logarithms, normal trig functions, etc.?
trigonometry mathematical-physics error-propagation
trigonometry mathematical-physics error-propagation
asked Feb 2 at 21:58
A. LavieA. Lavie
274
274
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
$$alpha=30.3^circ pm 5.32^circ$$
In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
$$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097859%2fabsolute-error-and-inverse-trig-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
$$alpha=30.3^circ pm 5.32^circ$$
In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
$$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$
$endgroup$
add a comment |
$begingroup$
We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
$$alpha=30.3^circ pm 5.32^circ$$
In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
$$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$
$endgroup$
add a comment |
$begingroup$
We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
$$alpha=30.3^circ pm 5.32^circ$$
In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
$$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$
$endgroup$
We have $alpha=arcsin{(0.503 pm 0.08)}$ from your original statement. As $arcsin(x)$ is an increasing function we can then write $arcsin{(0.503 - 0.08)} le alpha le arcsin{(0.503 + 0.08)}$ or approximately, $25.0^circ le alpha le 35.7^circ$. We can calculate the uncertainty of $alpha$ = $frac{1}{2} times$ range = $frac{1}{2} times (35.7-25.0)=5.32^circ$. So approximately we have:
$$alpha=30.3^circ pm 5.32^circ$$
In general for an increasing function $f(x)$, if we have $f^{-1}(x)=apm b$, then
$$x=frac{f(a+b)+f(a-b)}{2} pm frac{|f(a+b)-f(a-b)|}{2}$$
answered Feb 2 at 22:12
Peter ForemanPeter Foreman
7,3831319
7,3831319
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097859%2fabsolute-error-and-inverse-trig-functions%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown