Positivity of a limit
$begingroup$
Let $f:mathbb R^2 rightarrow mathbb R$. Show that if $f(x)>0$ for all $x$ and $lim_{xrightarrow a}f(x)$ exists, then $lim_{xrightarrow 0}f(x)geq0$.
My attempt:
Let $lim_{xrightarrow 0}f(x)=l$. By definition this means that for all $epsilon>0 $ there is $delta>0$ such that $|x-0|<delta$ implies $|f(x)-l|<epsilon.$ Hence, $f(x)-epsilon <l<f(x)+epsilon$.
Can we make $epsilon$ very small, so that $epsilon<f(x)$ (then 0<$f(x)-epsilon <l$), which is what we wanted to prove?
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb R^2 rightarrow mathbb R$. Show that if $f(x)>0$ for all $x$ and $lim_{xrightarrow a}f(x)$ exists, then $lim_{xrightarrow 0}f(x)geq0$.
My attempt:
Let $lim_{xrightarrow 0}f(x)=l$. By definition this means that for all $epsilon>0 $ there is $delta>0$ such that $|x-0|<delta$ implies $|f(x)-l|<epsilon.$ Hence, $f(x)-epsilon <l<f(x)+epsilon$.
Can we make $epsilon$ very small, so that $epsilon<f(x)$ (then 0<$f(x)-epsilon <l$), which is what we wanted to prove?
real-analysis
$endgroup$
add a comment |
$begingroup$
Let $f:mathbb R^2 rightarrow mathbb R$. Show that if $f(x)>0$ for all $x$ and $lim_{xrightarrow a}f(x)$ exists, then $lim_{xrightarrow 0}f(x)geq0$.
My attempt:
Let $lim_{xrightarrow 0}f(x)=l$. By definition this means that for all $epsilon>0 $ there is $delta>0$ such that $|x-0|<delta$ implies $|f(x)-l|<epsilon.$ Hence, $f(x)-epsilon <l<f(x)+epsilon$.
Can we make $epsilon$ very small, so that $epsilon<f(x)$ (then 0<$f(x)-epsilon <l$), which is what we wanted to prove?
real-analysis
$endgroup$
Let $f:mathbb R^2 rightarrow mathbb R$. Show that if $f(x)>0$ for all $x$ and $lim_{xrightarrow a}f(x)$ exists, then $lim_{xrightarrow 0}f(x)geq0$.
My attempt:
Let $lim_{xrightarrow 0}f(x)=l$. By definition this means that for all $epsilon>0 $ there is $delta>0$ such that $|x-0|<delta$ implies $|f(x)-l|<epsilon.$ Hence, $f(x)-epsilon <l<f(x)+epsilon$.
Can we make $epsilon$ very small, so that $epsilon<f(x)$ (then 0<$f(x)-epsilon <l$), which is what we wanted to prove?
real-analysis
real-analysis
asked Feb 3 at 0:06
dxdydzdxdydz
49110
49110
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Prove by contradiction. Suppose $L=lim_{x to a} f(x) <0$. Let $0<epsilon <-L$. Then, for $|x-a|$ sufficiently small we get $|f(x)-L| <epsilon$ which implies $f(x) <L+epsilon <0$, a contradiction.
$endgroup$
add a comment |
$begingroup$
Since $f(x)>0$, $-epsilon<f(x)-epsilon$. You have shown that for every $epsilon>0$, there exists $x$ such that $-epsilon<f(x)-epsilonleq l$ implies $lgeq 0$.
$endgroup$
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097981%2fpositivity-of-a-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Prove by contradiction. Suppose $L=lim_{x to a} f(x) <0$. Let $0<epsilon <-L$. Then, for $|x-a|$ sufficiently small we get $|f(x)-L| <epsilon$ which implies $f(x) <L+epsilon <0$, a contradiction.
$endgroup$
add a comment |
$begingroup$
Prove by contradiction. Suppose $L=lim_{x to a} f(x) <0$. Let $0<epsilon <-L$. Then, for $|x-a|$ sufficiently small we get $|f(x)-L| <epsilon$ which implies $f(x) <L+epsilon <0$, a contradiction.
$endgroup$
add a comment |
$begingroup$
Prove by contradiction. Suppose $L=lim_{x to a} f(x) <0$. Let $0<epsilon <-L$. Then, for $|x-a|$ sufficiently small we get $|f(x)-L| <epsilon$ which implies $f(x) <L+epsilon <0$, a contradiction.
$endgroup$
Prove by contradiction. Suppose $L=lim_{x to a} f(x) <0$. Let $0<epsilon <-L$. Then, for $|x-a|$ sufficiently small we get $|f(x)-L| <epsilon$ which implies $f(x) <L+epsilon <0$, a contradiction.
answered Feb 3 at 0:48
Kavi Rama MurthyKavi Rama Murthy
74.8k53270
74.8k53270
add a comment |
add a comment |
$begingroup$
Since $f(x)>0$, $-epsilon<f(x)-epsilon$. You have shown that for every $epsilon>0$, there exists $x$ such that $-epsilon<f(x)-epsilonleq l$ implies $lgeq 0$.
$endgroup$
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
add a comment |
$begingroup$
Since $f(x)>0$, $-epsilon<f(x)-epsilon$. You have shown that for every $epsilon>0$, there exists $x$ such that $-epsilon<f(x)-epsilonleq l$ implies $lgeq 0$.
$endgroup$
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
add a comment |
$begingroup$
Since $f(x)>0$, $-epsilon<f(x)-epsilon$. You have shown that for every $epsilon>0$, there exists $x$ such that $-epsilon<f(x)-epsilonleq l$ implies $lgeq 0$.
$endgroup$
Since $f(x)>0$, $-epsilon<f(x)-epsilon$. You have shown that for every $epsilon>0$, there exists $x$ such that $-epsilon<f(x)-epsilonleq l$ implies $lgeq 0$.
answered Feb 3 at 0:16
Tsemo AristideTsemo Aristide
60.7k11446
60.7k11446
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
add a comment |
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
but since $epsilon>0$, then $-epsilon<0$, so $𝑓(𝑥)−𝜖$ can be negative too, no?
$endgroup$
– dxdydz
Feb 3 at 0:24
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
$begingroup$
A number which is superior to every negative number is positive, if not, $l<0, l<{lover 2}<0$.
$endgroup$
– Tsemo Aristide
Feb 3 at 0:28
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097981%2fpositivity-of-a-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown