pyspark Regexp_Extract - Extract multiple words from a string column





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







-2















I am trying to extract words from a strings column using pyspark regexp.



My DataFrame Below :



ID, Code

10, A1005*B1003

12, A1007*D1008*C1004

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007


I want to extract codes from Code column and i want my DataFrame to display as below.



ID, Code,              Code1,  Code2,  Code3

10, A1005*B1003, A1005, B1003, null

12, A1007*D1008*C1004, A1007, D1008, C1004









share|improve this question

























  • Possible duplicate of Split Spark Dataframe string column into multiple columns

    – pault
    Jan 3 at 15:44


















-2















I am trying to extract words from a strings column using pyspark regexp.



My DataFrame Below :



ID, Code

10, A1005*B1003

12, A1007*D1008*C1004

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007


I want to extract codes from Code column and i want my DataFrame to display as below.



ID, Code,              Code1,  Code2,  Code3

10, A1005*B1003, A1005, B1003, null

12, A1007*D1008*C1004, A1007, D1008, C1004









share|improve this question

























  • Possible duplicate of Split Spark Dataframe string column into multiple columns

    – pault
    Jan 3 at 15:44














-2












-2








-2








I am trying to extract words from a strings column using pyspark regexp.



My DataFrame Below :



ID, Code

10, A1005*B1003

12, A1007*D1008*C1004

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007


I want to extract codes from Code column and i want my DataFrame to display as below.



ID, Code,              Code1,  Code2,  Code3

10, A1005*B1003, A1005, B1003, null

12, A1007*D1008*C1004, A1007, D1008, C1004









share|improve this question
















I am trying to extract words from a strings column using pyspark regexp.



My DataFrame Below :



ID, Code

10, A1005*B1003

12, A1007*D1008*C1004

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007

result=df.withColumn('Code1', regexp_extract(col(Code), 'w+',0))


Output :



ID, Code,              Code1, 

10, A1005*B1003, A1005

12, A1007*D1008*C1004, A1007


I want to extract codes from Code column and i want my DataFrame to display as below.



ID, Code,              Code1,  Code2,  Code3

10, A1005*B1003, A1005, B1003, null

12, A1007*D1008*C1004, A1007, D1008, C1004






pyspark






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Jan 3 at 15:36









SHR

6,06872544




6,06872544










asked Jan 3 at 15:15









MayanMayan

33




33













  • Possible duplicate of Split Spark Dataframe string column into multiple columns

    – pault
    Jan 3 at 15:44



















  • Possible duplicate of Split Spark Dataframe string column into multiple columns

    – pault
    Jan 3 at 15:44

















Possible duplicate of Split Spark Dataframe string column into multiple columns

– pault
Jan 3 at 15:44





Possible duplicate of Split Spark Dataframe string column into multiple columns

– pault
Jan 3 at 15:44












1 Answer
1






active

oldest

votes


















0














Assume your ID column is unique for each row; Here is one way of doing it with split, explode and then pivot:



import pyspark.sql.functions as f

(df.select('ID', 'Code', f.posexplode(f.split('Code', '\*')))
.withColumn('pos', f.concat(f.lit('code'), f.col('pos')))
.groupBy('ID', 'Code').pivot('pos').agg(f.first('col'))
.show())
+---+-----------------+-----+-----+-----+
| ID| Code|code0|code1|code2|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+


Another option without pivoting:



df1 = df.select('ID', 'Code', f.split('Code', '\*').alias('Codes'))
maxCodes = df1.agg(f.max(f.size('Codes'))).first()[0] # 3
df1.select(
'ID', 'Code',
*[f.col('Codes').getItem(i).alias(f'Code{i+1}') for i in range(maxCodes)]
).show()
+---+-----------------+-----+-----+-----+
| ID| Code|Code1|Code2|Code3|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+





share|improve this answer


























  • Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

    – Mayan
    Jan 3 at 15:49













  • If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

    – Psidom
    Jan 3 at 16:07











  • Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

    – Mayan
    Jan 8 at 14:35














Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54025061%2fpyspark-regexp-extract-extract-multiple-words-from-a-string-column%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









0














Assume your ID column is unique for each row; Here is one way of doing it with split, explode and then pivot:



import pyspark.sql.functions as f

(df.select('ID', 'Code', f.posexplode(f.split('Code', '\*')))
.withColumn('pos', f.concat(f.lit('code'), f.col('pos')))
.groupBy('ID', 'Code').pivot('pos').agg(f.first('col'))
.show())
+---+-----------------+-----+-----+-----+
| ID| Code|code0|code1|code2|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+


Another option without pivoting:



df1 = df.select('ID', 'Code', f.split('Code', '\*').alias('Codes'))
maxCodes = df1.agg(f.max(f.size('Codes'))).first()[0] # 3
df1.select(
'ID', 'Code',
*[f.col('Codes').getItem(i).alias(f'Code{i+1}') for i in range(maxCodes)]
).show()
+---+-----------------+-----+-----+-----+
| ID| Code|Code1|Code2|Code3|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+





share|improve this answer


























  • Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

    – Mayan
    Jan 3 at 15:49













  • If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

    – Psidom
    Jan 3 at 16:07











  • Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

    – Mayan
    Jan 8 at 14:35


















0














Assume your ID column is unique for each row; Here is one way of doing it with split, explode and then pivot:



import pyspark.sql.functions as f

(df.select('ID', 'Code', f.posexplode(f.split('Code', '\*')))
.withColumn('pos', f.concat(f.lit('code'), f.col('pos')))
.groupBy('ID', 'Code').pivot('pos').agg(f.first('col'))
.show())
+---+-----------------+-----+-----+-----+
| ID| Code|code0|code1|code2|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+


Another option without pivoting:



df1 = df.select('ID', 'Code', f.split('Code', '\*').alias('Codes'))
maxCodes = df1.agg(f.max(f.size('Codes'))).first()[0] # 3
df1.select(
'ID', 'Code',
*[f.col('Codes').getItem(i).alias(f'Code{i+1}') for i in range(maxCodes)]
).show()
+---+-----------------+-----+-----+-----+
| ID| Code|Code1|Code2|Code3|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+





share|improve this answer


























  • Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

    – Mayan
    Jan 3 at 15:49













  • If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

    – Psidom
    Jan 3 at 16:07











  • Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

    – Mayan
    Jan 8 at 14:35
















0












0








0







Assume your ID column is unique for each row; Here is one way of doing it with split, explode and then pivot:



import pyspark.sql.functions as f

(df.select('ID', 'Code', f.posexplode(f.split('Code', '\*')))
.withColumn('pos', f.concat(f.lit('code'), f.col('pos')))
.groupBy('ID', 'Code').pivot('pos').agg(f.first('col'))
.show())
+---+-----------------+-----+-----+-----+
| ID| Code|code0|code1|code2|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+


Another option without pivoting:



df1 = df.select('ID', 'Code', f.split('Code', '\*').alias('Codes'))
maxCodes = df1.agg(f.max(f.size('Codes'))).first()[0] # 3
df1.select(
'ID', 'Code',
*[f.col('Codes').getItem(i).alias(f'Code{i+1}') for i in range(maxCodes)]
).show()
+---+-----------------+-----+-----+-----+
| ID| Code|Code1|Code2|Code3|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+





share|improve this answer















Assume your ID column is unique for each row; Here is one way of doing it with split, explode and then pivot:



import pyspark.sql.functions as f

(df.select('ID', 'Code', f.posexplode(f.split('Code', '\*')))
.withColumn('pos', f.concat(f.lit('code'), f.col('pos')))
.groupBy('ID', 'Code').pivot('pos').agg(f.first('col'))
.show())
+---+-----------------+-----+-----+-----+
| ID| Code|code0|code1|code2|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+


Another option without pivoting:



df1 = df.select('ID', 'Code', f.split('Code', '\*').alias('Codes'))
maxCodes = df1.agg(f.max(f.size('Codes'))).first()[0] # 3
df1.select(
'ID', 'Code',
*[f.col('Codes').getItem(i).alias(f'Code{i+1}') for i in range(maxCodes)]
).show()
+---+-----------------+-----+-----+-----+
| ID| Code|Code1|Code2|Code3|
+---+-----------------+-----+-----+-----+
| 10| A1005*B1003|A1005|B1003| null|
| 12|A1007*D1008*C1004|A1007|D1008|C1004|
+---+-----------------+-----+-----+-----+






share|improve this answer














share|improve this answer



share|improve this answer








edited Jan 3 at 15:44

























answered Jan 3 at 15:34









PsidomPsidom

128k1293141




128k1293141













  • Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

    – Mayan
    Jan 3 at 15:49













  • If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

    – Psidom
    Jan 3 at 16:07











  • Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

    – Mayan
    Jan 8 at 14:35





















  • Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

    – Mayan
    Jan 3 at 15:49













  • If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

    – Psidom
    Jan 3 at 16:07











  • Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

    – Mayan
    Jan 8 at 14:35



















Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

– Mayan
Jan 3 at 15:49







Hi , Thank you for the quick reply. The code column holds the arithmetic operators. The code column can store values like (A1002*B1002)-C1003+D1005 or A1004/(C1008-D1006). And the number of codes in the string can go upto 7.

– Mayan
Jan 3 at 15:49















If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

– Psidom
Jan 3 at 16:07





If the word you want to extract contains only digits and letters, you can replace f.split(...) in above two options with f.array_remove(f.split('Code', '\W+'), ''), and it should give the result you needed.

– Psidom
Jan 3 at 16:07













Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

– Mayan
Jan 8 at 14:35







Hi, Could you please help me with transpose the same dataset as below. ID Code Code_T 10 A1005*B1003 A1005 10 A1005*B1003 B1003 12 A1007*D1008*C1004 A1007 12 A1007*D1008*C1004 D1008 12 A1007*D1008*C1004 C1004

– Mayan
Jan 8 at 14:35






















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f54025061%2fpyspark-regexp-extract-extract-multiple-words-from-a-string-column%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

'app-layout' is not a known element: how to share Component with different Modules