Norm convergence of Fourier series in the dual of a Sobolev space
$begingroup$
If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:
$$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.
Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$
I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?
fourier-series sobolev-spaces
$endgroup$
add a comment |
$begingroup$
If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:
$$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.
Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$
I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?
fourier-series sobolev-spaces
$endgroup$
add a comment |
$begingroup$
If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:
$$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.
Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$
I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?
fourier-series sobolev-spaces
$endgroup$
If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:
$$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.
Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$
I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?
fourier-series sobolev-spaces
fourier-series sobolev-spaces
edited Feb 3 at 17:05
Bob
asked Feb 2 at 23:18
BobBob
1,7051725
1,7051725
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097926%2fnorm-convergence-of-fourier-series-in-the-dual-of-a-sobolev-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097926%2fnorm-convergence-of-fourier-series-in-the-dual-of-a-sobolev-space%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown