Norm convergence of Fourier series in the dual of a Sobolev space












0












$begingroup$


If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:



$$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.




Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$




I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
    From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:



    $$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
    What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.




    Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$




    I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
      From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:



      $$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
      What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.




      Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$




      I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?










      share|cite|improve this question











      $endgroup$




      If $mathbb{T}$ is the 1-torus and $1<p<infty$, then for every $f$ in the Sobolev space $W^{1,p}(mathbb{T})$ we have that the Fourier series of $f$ converges in the $W^{1,p}(mathbb{T})$ to $f$.
      From this, we can deduce that the Fourier series of every $fin W^{-1,p}(mathbb{T}):=(W^{1,p}(mathbb{T}))'$ converges in the weak* topology of $W^{-1,p}(mathbb{T})$ to $f$. In fact, denoting $e_n(t):=e^{int}$ so that $hat f(n):=langle f,e_{-n}rangle$, we have that:



      $$forall fin W^{-1,p}(mathbb{T}),forall varphi in W^{1,p}(mathbb{T}), langlesum_{n=-N}^Nhat{f}(n)e_n,varphirangle = sum_{n=-N}^Nhat{f}(n)hatvarphi(-n) \= langle f,sum_{n=-N}^Nhat{varphi}(-n)e_{-n}rangle = langle f,sum_{n=-N}^Nhat{varphi}(n)e_{n}rangle to langle f,varphirangle, Nto+infty.$$
      What about the convergence in the norm topology of $W^{-1,p}(mathbb{T})$? I.e.




      Is it true that $forall fin W^{-1,p}(mathbb{T}), |sum_{n=-N}^N hat f(n)e_n-f|_{W^{-1,p}(mathbb{T})}to 0, Nto+infty?$




      I know from the fact that the Fourier transform is an isometry between $W^{-1,2}(mathbb{T})$ and ${ainmathbb{C}^{mathbb{Z}} | sum_{ninmathbb{Z}backslash{0}}frac{|a_n|^2}{|n|^2}<+infty}$ that the result is true for $p=2$, but what if $pin(1,2)cup(2,+infty)$?







      fourier-series sobolev-spaces






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 3 at 17:05







      Bob

















      asked Feb 2 at 23:18









      BobBob

      1,7051725




      1,7051725






















          0






          active

          oldest

          votes












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097926%2fnorm-convergence-of-fourier-series-in-the-dual-of-a-sobolev-space%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097926%2fnorm-convergence-of-fourier-series-in-the-dual-of-a-sobolev-space%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Can a sorcerer learn a 5th-level spell early by creating spell slots using the Font of Magic feature?

          Does disintegrating a polymorphed enemy still kill it after the 2018 errata?

          A Topological Invariant for $pi_3(U(n))$