Angle bisector in triangle, quick question: $|AE| = frac{bc}{a+c}$
$begingroup$
Triangle $ABC$; $AB=c, BC=a, AC=b$; angle bisector of angle $(c, a)$ cuts $AC$ in point $E$.
Why is the following true?
$$|AE| = frac{bc}{a+c}$$
Where does that come from?
geometry trigonometry triangles
$endgroup$
add a comment |
$begingroup$
Triangle $ABC$; $AB=c, BC=a, AC=b$; angle bisector of angle $(c, a)$ cuts $AC$ in point $E$.
Why is the following true?
$$|AE| = frac{bc}{a+c}$$
Where does that come from?
geometry trigonometry triangles
$endgroup$
add a comment |
$begingroup$
Triangle $ABC$; $AB=c, BC=a, AC=b$; angle bisector of angle $(c, a)$ cuts $AC$ in point $E$.
Why is the following true?
$$|AE| = frac{bc}{a+c}$$
Where does that come from?
geometry trigonometry triangles
$endgroup$
Triangle $ABC$; $AB=c, BC=a, AC=b$; angle bisector of angle $(c, a)$ cuts $AC$ in point $E$.
Why is the following true?
$$|AE| = frac{bc}{a+c}$$
Where does that come from?
geometry trigonometry triangles
geometry trigonometry triangles
edited Feb 2 at 18:10
Shaun
10.5k113687
10.5k113687
asked Feb 2 at 17:59


PeroPero
1497
1497
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Hint: We get $$frac{AE}{EC}=frac{c}{a}$$
And $$EC=b-AE$$ then we get $$frac{b-AE}{AE}=frac{c}{a}$$
$endgroup$
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
add a comment |
$begingroup$
let $beta$ be half of the bisected angle, and $theta$ denote the angle AEB.
then the sine rule in triangle AEB gives:
$$
frac{|AE|}{sin beta} = frac{c}{sin theta}
$$
and the sine rule in triangle CEB gives:
$$
frac{|EC|}{sin beta} = frac{a}{sin (pi - theta)}
$$
since $sin theta = sin (pi-theta)$ and $|AE|+|EC| = b$, the result follows
$endgroup$
add a comment |
$begingroup$
The angle bisector theorem:
$$frac{CE}{AE}=frac ac$$
Then:
$$frac{bc}{a+c}=frac{b}{frac ac+1}=frac{b}{frac{CE}{AE}+1}=frac{AEcdot b}{CE+AE}=AE$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097573%2fangle-bisector-in-triangle-quick-question-ae-fracbcac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: We get $$frac{AE}{EC}=frac{c}{a}$$
And $$EC=b-AE$$ then we get $$frac{b-AE}{AE}=frac{c}{a}$$
$endgroup$
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
add a comment |
$begingroup$
Hint: We get $$frac{AE}{EC}=frac{c}{a}$$
And $$EC=b-AE$$ then we get $$frac{b-AE}{AE}=frac{c}{a}$$
$endgroup$
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
add a comment |
$begingroup$
Hint: We get $$frac{AE}{EC}=frac{c}{a}$$
And $$EC=b-AE$$ then we get $$frac{b-AE}{AE}=frac{c}{a}$$
$endgroup$
Hint: We get $$frac{AE}{EC}=frac{c}{a}$$
And $$EC=b-AE$$ then we get $$frac{b-AE}{AE}=frac{c}{a}$$
edited Feb 2 at 18:25
answered Feb 2 at 18:01


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79k42867
79k42867
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
add a comment |
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
you mean $frac ca$ ? But I still can't get to what I asked from here.
$endgroup$
– Pero
Feb 2 at 18:04
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
It is the angle bisector theorem
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:08
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Yes, I know it. I tried to get to what I asked with the angle bisector theorem, but I couldn't. What am I missing?
$endgroup$
– Pero
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
$begingroup$
Sorry for that typo!
$endgroup$
– Dr. Sonnhard Graubner
Feb 2 at 18:10
add a comment |
$begingroup$
let $beta$ be half of the bisected angle, and $theta$ denote the angle AEB.
then the sine rule in triangle AEB gives:
$$
frac{|AE|}{sin beta} = frac{c}{sin theta}
$$
and the sine rule in triangle CEB gives:
$$
frac{|EC|}{sin beta} = frac{a}{sin (pi - theta)}
$$
since $sin theta = sin (pi-theta)$ and $|AE|+|EC| = b$, the result follows
$endgroup$
add a comment |
$begingroup$
let $beta$ be half of the bisected angle, and $theta$ denote the angle AEB.
then the sine rule in triangle AEB gives:
$$
frac{|AE|}{sin beta} = frac{c}{sin theta}
$$
and the sine rule in triangle CEB gives:
$$
frac{|EC|}{sin beta} = frac{a}{sin (pi - theta)}
$$
since $sin theta = sin (pi-theta)$ and $|AE|+|EC| = b$, the result follows
$endgroup$
add a comment |
$begingroup$
let $beta$ be half of the bisected angle, and $theta$ denote the angle AEB.
then the sine rule in triangle AEB gives:
$$
frac{|AE|}{sin beta} = frac{c}{sin theta}
$$
and the sine rule in triangle CEB gives:
$$
frac{|EC|}{sin beta} = frac{a}{sin (pi - theta)}
$$
since $sin theta = sin (pi-theta)$ and $|AE|+|EC| = b$, the result follows
$endgroup$
let $beta$ be half of the bisected angle, and $theta$ denote the angle AEB.
then the sine rule in triangle AEB gives:
$$
frac{|AE|}{sin beta} = frac{c}{sin theta}
$$
and the sine rule in triangle CEB gives:
$$
frac{|EC|}{sin beta} = frac{a}{sin (pi - theta)}
$$
since $sin theta = sin (pi-theta)$ and $|AE|+|EC| = b$, the result follows
answered Feb 2 at 18:25
David HoldenDavid Holden
14.9k21225
14.9k21225
add a comment |
add a comment |
$begingroup$
The angle bisector theorem:
$$frac{CE}{AE}=frac ac$$
Then:
$$frac{bc}{a+c}=frac{b}{frac ac+1}=frac{b}{frac{CE}{AE}+1}=frac{AEcdot b}{CE+AE}=AE$$
$endgroup$
add a comment |
$begingroup$
The angle bisector theorem:
$$frac{CE}{AE}=frac ac$$
Then:
$$frac{bc}{a+c}=frac{b}{frac ac+1}=frac{b}{frac{CE}{AE}+1}=frac{AEcdot b}{CE+AE}=AE$$
$endgroup$
add a comment |
$begingroup$
The angle bisector theorem:
$$frac{CE}{AE}=frac ac$$
Then:
$$frac{bc}{a+c}=frac{b}{frac ac+1}=frac{b}{frac{CE}{AE}+1}=frac{AEcdot b}{CE+AE}=AE$$
$endgroup$
The angle bisector theorem:
$$frac{CE}{AE}=frac ac$$
Then:
$$frac{bc}{a+c}=frac{b}{frac ac+1}=frac{b}{frac{CE}{AE}+1}=frac{AEcdot b}{CE+AE}=AE$$
answered Feb 2 at 18:27


farruhotafarruhota
22.1k2942
22.1k2942
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097573%2fangle-bisector-in-triangle-quick-question-ae-fracbcac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown