$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
$begingroup$
Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
from LS
$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
is this right?
algebra-precalculus logarithms
$endgroup$
add a comment |
$begingroup$
Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
from LS
$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
is this right?
algebra-precalculus logarithms
$endgroup$
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53
add a comment |
$begingroup$
Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
from LS
$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
is this right?
algebra-precalculus logarithms
$endgroup$
Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
from LS
$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$
is this right?
algebra-precalculus logarithms
algebra-precalculus logarithms
edited Feb 2 at 20:06


El borito
664216
664216
asked Feb 2 at 19:29
Bas basBas bas
49512
49512
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53
add a comment |
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.
1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$
2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$
$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$
$endgroup$
add a comment |
$begingroup$
Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$
$endgroup$
add a comment |
$begingroup$
I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097695%2fdisplaystyle-1-frac-log-22-3n1-log-23-2-frac-log-2n1-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.
1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$
2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$
$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$
$endgroup$
add a comment |
$begingroup$
Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.
1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$
2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$
$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$
$endgroup$
add a comment |
$begingroup$
Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.
1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$
2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$
$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$
$endgroup$
Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.
1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$
2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$
$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$
answered Feb 2 at 21:49
Michael RybkinMichael Rybkin
4,264422
4,264422
add a comment |
add a comment |
$begingroup$
Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$
$endgroup$
add a comment |
$begingroup$
Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$
$endgroup$
add a comment |
$begingroup$
Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$
$endgroup$
Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$
edited Feb 2 at 21:30


El borito
664216
664216
answered Feb 2 at 19:41
programmerprogrammer
837
837
add a comment |
add a comment |
$begingroup$
I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$
$endgroup$
add a comment |
$begingroup$
I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$
$endgroup$
add a comment |
$begingroup$
I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$
$endgroup$
I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$
answered Feb 2 at 19:39


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
79k42867
79k42867
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097695%2fdisplaystyle-1-frac-log-22-3n1-log-23-2-frac-log-2n1-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53