$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$












1












$begingroup$


Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



from LS



$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



is this right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This question is similar to this question
    $endgroup$
    – J. W. Tanner
    Feb 3 at 1:53
















1












$begingroup$


Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



from LS



$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



is this right?










share|cite|improve this question











$endgroup$












  • $begingroup$
    This question is similar to this question
    $endgroup$
    – J. W. Tanner
    Feb 3 at 1:53














1












1








1





$begingroup$


Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



from LS



$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



is this right?










share|cite|improve this question











$endgroup$




Show $displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



from LS



$displaystyle 1+ frac{log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2(3/2) + log_2(2/3(n+1))}{log_2(3/2)} = frac{log_2big(frac{6(n+1)}{6}big)}{log_2(3/2)} = frac{log_2(n+1)}{log_2(3/2)}$



is this right?







algebra-precalculus logarithms






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 20:06









El borito

664216




664216










asked Feb 2 at 19:29









Bas basBas bas

49512




49512












  • $begingroup$
    This question is similar to this question
    $endgroup$
    – J. W. Tanner
    Feb 3 at 1:53


















  • $begingroup$
    This question is similar to this question
    $endgroup$
    – J. W. Tanner
    Feb 3 at 1:53
















$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53




$begingroup$
This question is similar to this question
$endgroup$
– J. W. Tanner
Feb 3 at 1:53










3 Answers
3






active

oldest

votes


















0












$begingroup$

Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.



1)$$
log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
-1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
$$



2)$$
log_{a}left({xy}right)=log_{a}{x}+log_{y}.
$$




$$
1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
frac{log_2left(n+1right)}{log_2frac{3}{2}}
$$





share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$






    share|cite|improve this answer











    $endgroup$





















      0












      $begingroup$

      I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$






      share|cite|improve this answer









      $endgroup$














        Your Answer








        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "69"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097695%2fdisplaystyle-1-frac-log-22-3n1-log-23-2-frac-log-2n1-log%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        0












        $begingroup$

        Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.



        1)$$
        log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
        -1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
        $$



        2)$$
        log_{a}left({xy}right)=log_{a}{x}+log_{y}.
        $$




        $$
        1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
        1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
        1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
        1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
        1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
        frac{log_2left(n+1right)}{log_2frac{3}{2}}
        $$





        share|cite|improve this answer









        $endgroup$


















          0












          $begingroup$

          Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.



          1)$$
          log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
          -1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
          $$



          2)$$
          log_{a}left({xy}right)=log_{a}{x}+log_{y}.
          $$




          $$
          1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
          1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
          1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
          1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
          1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
          frac{log_2left(n+1right)}{log_2frac{3}{2}}
          $$





          share|cite|improve this answer









          $endgroup$
















            0












            0








            0





            $begingroup$

            Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.



            1)$$
            log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
            -1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
            $$



            2)$$
            log_{a}left({xy}right)=log_{a}{x}+log_{y}.
            $$




            $$
            1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
            1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
            1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
            1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
            1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
            frac{log_2left(n+1right)}{log_2frac{3}{2}}
            $$





            share|cite|improve this answer









            $endgroup$



            Yes, your solution is correct, but you could have done it a more "natural" way. In this case of your problem, there two useful properties of logarithms that you could use: exponents can be brought out front and multiplication under the logarithm sign turns into addition when the multiplicands are separated.



            1)$$
            log_{a}{frac{x}{y}}=log_{a}{left[left(frac{y}{x}right)^{-1}right]}=
            -1cdotlog_{a}{frac{y}{x}}=-log_{a}{frac{y}{x}}.
            $$



            2)$$
            log_{a}left({xy}right)=log_{a}{x}+log_{y}.
            $$




            $$
            1+frac{log_2left[frac{2}{3}(n+1)right]}{log_2frac{3}{2}} =
            1+frac{log_2frac{2}{3}+log_2left(n+1right)}{log_2frac{3}{2}} =\
            1+frac{-log_2frac{3}{2}+log_2left(n+1right)}{log_2frac{3}{2}}=
            1-frac{log_2frac{3}{2}}{log_2frac{3}{2}}+frac{log_2left(n+1right)}{log_2frac{3}{2}}=\
            1-1+frac{log_2left(n+1right)}{log_2frac{3}{2}}=
            frac{log_2left(n+1right)}{log_2frac{3}{2}}
            $$






            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Feb 2 at 21:49









            Michael RybkinMichael Rybkin

            4,264422




            4,264422























                1












                $begingroup$

                Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$






                share|cite|improve this answer











                $endgroup$


















                  1












                  $begingroup$

                  Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$






                  share|cite|improve this answer











                  $endgroup$
















                    1












                    1








                    1





                    $begingroup$

                    Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$






                    share|cite|improve this answer











                    $endgroup$



                    Its right. Although for clarity, perhaps it would be better to write $displaystyle frac{log_2(2/3(n+1))}{log_2(3/2)}$ as $displaystyle frac{log_2((2/3)(n+1))}{log_2(3/2)}$







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited Feb 2 at 21:30









                    El borito

                    664216




                    664216










                    answered Feb 2 at 19:41









                    programmerprogrammer

                    837




                    837























                        0












                        $begingroup$

                        I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$






                        share|cite|improve this answer









                        $endgroup$


















                          0












                          $begingroup$

                          I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$






                          share|cite|improve this answer









                          $endgroup$
















                            0












                            0








                            0





                            $begingroup$

                            I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$






                            share|cite|improve this answer









                            $endgroup$



                            I would write $$log_{2}frac{3}{2}+log_{2}frac{2}{3}+log_{2}(n+1)=log_{2}(n+1)$$ since $$log_{2}{frac{2}{3}}=-log_{2}{frac{3}{2}}$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Feb 2 at 19:39









                            Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                            79k42867




                            79k42867






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097695%2fdisplaystyle-1-frac-log-22-3n1-log-23-2-frac-log-2n1-log%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                MongoDB - Not Authorized To Execute Command

                                How to fix TextFormField cause rebuild widget in Flutter

                                in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith