Given $f_{X,Y}$, find out the marginal distributions $f_{X}$ and $f_{Y}$ as well as the expectations...












0












$begingroup$


The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}



(a) Determine the value of $c$



(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$



(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$



MY SOLUTION



(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}



(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}



Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?



EDIT



According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}



where the support of $X$ is given by $S_{X} = textbf{R}$.



(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}



If there is any additional mistake, do not hesitate to comment.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
    $endgroup$
    – Did
    Feb 2 at 20:53










  • $begingroup$
    Thanks for the comment, Did. I have already edited the answer.
    $endgroup$
    – APC89
    Feb 2 at 21:16










  • $begingroup$
    @Did Why is the lower limit of the integral $|x|$?
    $endgroup$
    – David
    Apr 9 at 4:22


















0












$begingroup$


The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}



(a) Determine the value of $c$



(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$



(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$



MY SOLUTION



(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}



(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}



Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?



EDIT



According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}



where the support of $X$ is given by $S_{X} = textbf{R}$.



(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}



If there is any additional mistake, do not hesitate to comment.










share|cite|improve this question











$endgroup$








  • 2




    $begingroup$
    Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
    $endgroup$
    – Did
    Feb 2 at 20:53










  • $begingroup$
    Thanks for the comment, Did. I have already edited the answer.
    $endgroup$
    – APC89
    Feb 2 at 21:16










  • $begingroup$
    @Did Why is the lower limit of the integral $|x|$?
    $endgroup$
    – David
    Apr 9 at 4:22
















0












0








0





$begingroup$


The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}



(a) Determine the value of $c$



(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$



(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$



MY SOLUTION



(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}



(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}



Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?



EDIT



According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}



where the support of $X$ is given by $S_{X} = textbf{R}$.



(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}



If there is any additional mistake, do not hesitate to comment.










share|cite|improve this question











$endgroup$




The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}



(a) Determine the value of $c$



(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$



(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$



MY SOLUTION



(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}



(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}



Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?



EDIT



According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}



where the support of $X$ is given by $S_{X} = textbf{R}$.



(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}



If there is any additional mistake, do not hesitate to comment.







probability-theory probability-distributions






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 21:14







APC89

















asked Feb 2 at 19:51









APC89APC89

2,371720




2,371720








  • 2




    $begingroup$
    Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
    $endgroup$
    – Did
    Feb 2 at 20:53










  • $begingroup$
    Thanks for the comment, Did. I have already edited the answer.
    $endgroup$
    – APC89
    Feb 2 at 21:16










  • $begingroup$
    @Did Why is the lower limit of the integral $|x|$?
    $endgroup$
    – David
    Apr 9 at 4:22
















  • 2




    $begingroup$
    Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
    $endgroup$
    – Did
    Feb 2 at 20:53










  • $begingroup$
    Thanks for the comment, Did. I have already edited the answer.
    $endgroup$
    – APC89
    Feb 2 at 21:16










  • $begingroup$
    @Did Why is the lower limit of the integral $|x|$?
    $endgroup$
    – David
    Apr 9 at 4:22










2




2




$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53




$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53












$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16




$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16












$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22






$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22












0






active

oldest

votes












Your Answer








StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097716%2fgiven-f-x-y-find-out-the-marginal-distributions-f-x-and-f-y-as-well%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097716%2fgiven-f-x-y-find-out-the-marginal-distributions-f-x-and-f-y-as-well%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith