Given $f_{X,Y}$, find out the marginal distributions $f_{X}$ and $f_{Y}$ as well as the expectations...
$begingroup$
The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}
(a) Determine the value of $c$
(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$
(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$
MY SOLUTION
(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}
(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}
Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?
EDIT
According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}
where the support of $X$ is given by $S_{X} = textbf{R}$.
(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}
If there is any additional mistake, do not hesitate to comment.
probability-theory probability-distributions
$endgroup$
add a comment |
$begingroup$
The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}
(a) Determine the value of $c$
(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$
(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$
MY SOLUTION
(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}
(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}
Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?
EDIT
According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}
where the support of $X$ is given by $S_{X} = textbf{R}$.
(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}
If there is any additional mistake, do not hesitate to comment.
probability-theory probability-distributions
$endgroup$
2
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22
add a comment |
$begingroup$
The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}
(a) Determine the value of $c$
(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$
(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$
MY SOLUTION
(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}
(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}
Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?
EDIT
According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}
where the support of $X$ is given by $S_{X} = textbf{R}$.
(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}
If there is any additional mistake, do not hesitate to comment.
probability-theory probability-distributions
$endgroup$
The joint probability density function of $(X,Y)$ is given by
begin{align*}
f_{X,Y}(x,y) =
begin{cases}
c(y^{2} - x^{2})e^{-y} & text{if},,,-yleq x leq y,,text{and},,0 < y < +infty\\
0 & text{otherwise}
end{cases}
end{align*}
(a) Determine the value of $c$
(b) Determine the marginal probability density functions $f_{X}$ and $f_{Y}$
(c) Calculate $textbf{E}(X)$ and $textbf{E}(Y)$
MY SOLUTION
(a) According to the definition of joint probability density function, we have
begin{align*}
cint_{0}^{infty}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}xmathrm{d}y & = cint_{0}^{infty}left(2y^{3}e^{-y} - frac{2y^{3}}{3}e^{-y}right)mathrm{d}y\
& = frac{c}{3}int_{0}^{infty}4y^{3}e^{-y}mathrm{d}y = 8c = 1
end{align*}
(b) Once again, it results immediately from the definition that
begin{align*}
f_{X}(x) & = int_{0}^{infty}f_{X,Y}(x,y)mathrm{d}y = frac{1}{8}int_{0}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{2-x^{2}}{8}\\
f_{Y}(y) & = int_{-y}^{y}f_{X,Y}(x,y)mathrm{d}x = frac{1}{8}int_{-y}^{y}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}x = frac{y^{3}e^{-y}}{6}
end{align*}
Where the support of $Y$ is given by $S_{Y} = textbf{R}_{geq0}$. Nonetheless, I am still having troubles in calculating the support of $X$. Can someome help me?
EDIT
According to Did's observation, the actual probability density function is given by
begin{align*}
f_{X}(x) = int_{|x|}^{infty}(y^{2}e^{-y} - x^{2}e^{-y})mathrm{d}y = frac{e^{-|x|}(|x| + 1)}{4}
end{align*}
where the support of $X$ is given by $S_{X} = textbf{R}$.
(c) Finally, we have
begin{align*}
textbf{E}(X) & = int_{-infty}^{+infty}xf_{X}(x)mathrm{d}x = frac{1}{4}int_{-infty}^{+infty}xe^{-|x|}(|x|+1)mathrm{d}x = 0\\
textbf{E}(Y) & = int_{0}^{infty}yf_{Y}(y)mathrm{d}Y = frac{1}{6}int_{0}^{infty}y^{4}e^{-y}mathrm{d}y = 4
end{align*}
If there is any additional mistake, do not hesitate to comment.
probability-theory probability-distributions
probability-theory probability-distributions
edited Feb 2 at 21:14
APC89
asked Feb 2 at 19:51
APC89APC89
2,371720
2,371720
2
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22
add a comment |
2
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22
2
2
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097716%2fgiven-f-x-y-find-out-the-marginal-distributions-f-x-and-f-y-as-well%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097716%2fgiven-f-x-y-find-out-the-marginal-distributions-f-x-and-f-y-as-well%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Actually, $$f_X(x) = int_0^infty f_{X,Y}(x,y)mathrm dy = frac18int_{|x|}^infty(y^2e^{-y} - x^2e^{-y})mathrm dy = cdots$$
$endgroup$
– Did
Feb 2 at 20:53
$begingroup$
Thanks for the comment, Did. I have already edited the answer.
$endgroup$
– APC89
Feb 2 at 21:16
$begingroup$
@Did Why is the lower limit of the integral $|x|$?
$endgroup$
– David
Apr 9 at 4:22