How to integrate this using trig substitution?
$begingroup$
I have to find the definite integral of this:
$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$
So let's start with the indefinite integral:
so $x = sec theta$ so $ dx = sec theta tan theta d theta$
So
$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$
$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$
$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$
But now I'm stuck...
EDIT
Unstuck:
$$int frac{cos theta}{sin^2 theta} $$
Let's use $u = sin theta$
$$int frac{1}{u^2} du$$
$$ frac{u^-1}{-1} + c$$
$$- frac{1}{sin theta} + c$$
So given that $ x = sec theta$:
$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$
$$- frac{x}{sqrt{x^2-1}}$$
How does that look?
integration
$endgroup$
add a comment |
$begingroup$
I have to find the definite integral of this:
$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$
So let's start with the indefinite integral:
so $x = sec theta$ so $ dx = sec theta tan theta d theta$
So
$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$
$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$
$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$
But now I'm stuck...
EDIT
Unstuck:
$$int frac{cos theta}{sin^2 theta} $$
Let's use $u = sin theta$
$$int frac{1}{u^2} du$$
$$ frac{u^-1}{-1} + c$$
$$- frac{1}{sin theta} + c$$
So given that $ x = sec theta$:
$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$
$$- frac{x}{sqrt{x^2-1}}$$
How does that look?
integration
$endgroup$
1
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15
add a comment |
$begingroup$
I have to find the definite integral of this:
$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$
So let's start with the indefinite integral:
so $x = sec theta$ so $ dx = sec theta tan theta d theta$
So
$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$
$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$
$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$
But now I'm stuck...
EDIT
Unstuck:
$$int frac{cos theta}{sin^2 theta} $$
Let's use $u = sin theta$
$$int frac{1}{u^2} du$$
$$ frac{u^-1}{-1} + c$$
$$- frac{1}{sin theta} + c$$
So given that $ x = sec theta$:
$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$
$$- frac{x}{sqrt{x^2-1}}$$
How does that look?
integration
$endgroup$
I have to find the definite integral of this:
$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$
So let's start with the indefinite integral:
so $x = sec theta$ so $ dx = sec theta tan theta d theta$
So
$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$
$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$
$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$
But now I'm stuck...
EDIT
Unstuck:
$$int frac{cos theta}{sin^2 theta} $$
Let's use $u = sin theta$
$$int frac{1}{u^2} du$$
$$ frac{u^-1}{-1} + c$$
$$- frac{1}{sin theta} + c$$
So given that $ x = sec theta$:
$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$
$$- frac{x}{sqrt{x^2-1}}$$
How does that look?
integration
integration
edited Feb 2 at 19:31
Jwan622
asked Feb 2 at 19:10


Jwan622Jwan622
2,39011632
2,39011632
1
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15
add a comment |
1
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15
1
1
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.
$endgroup$
add a comment |
$begingroup$
$$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$
For $tan x>0,$
$$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$
What if $tan x<0$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097672%2fhow-to-integrate-this-using-trig-substitution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.
$endgroup$
add a comment |
$begingroup$
You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.
$endgroup$
add a comment |
$begingroup$
You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.
$endgroup$
You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.
answered Feb 2 at 19:14
J.G.J.G.
33.5k23252
33.5k23252
add a comment |
add a comment |
$begingroup$
$$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$
For $tan x>0,$
$$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$
What if $tan x<0$
$endgroup$
add a comment |
$begingroup$
$$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$
For $tan x>0,$
$$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$
What if $tan x<0$
$endgroup$
add a comment |
$begingroup$
$$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$
For $tan x>0,$
$$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$
What if $tan x<0$
$endgroup$
$$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$
For $tan x>0,$
$$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$
What if $tan x<0$
edited Feb 2 at 19:38
answered Feb 2 at 19:17
lab bhattacharjeelab bhattacharjee
229k15159279
229k15159279
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097672%2fhow-to-integrate-this-using-trig-substitution%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15