How to integrate this using trig substitution?












0












$begingroup$


I have to find the definite integral of this:



$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$



So let's start with the indefinite integral:



so $x = sec theta$ so $ dx = sec theta tan theta d theta$



So



$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$



$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$



$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$



But now I'm stuck...



EDIT



Unstuck:



$$int frac{cos theta}{sin^2 theta} $$



Let's use $u = sin theta$



$$int frac{1}{u^2} du$$



$$ frac{u^-1}{-1} + c$$



$$- frac{1}{sin theta} + c$$



So given that $ x = sec theta$:



$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$



$$- frac{x}{sqrt{x^2-1}}$$



How does that look?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
    $endgroup$
    – Clayton
    Feb 2 at 19:15
















0












$begingroup$


I have to find the definite integral of this:



$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$



So let's start with the indefinite integral:



so $x = sec theta$ so $ dx = sec theta tan theta d theta$



So



$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$



$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$



$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$



But now I'm stuck...



EDIT



Unstuck:



$$int frac{cos theta}{sin^2 theta} $$



Let's use $u = sin theta$



$$int frac{1}{u^2} du$$



$$ frac{u^-1}{-1} + c$$



$$- frac{1}{sin theta} + c$$



So given that $ x = sec theta$:



$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$



$$- frac{x}{sqrt{x^2-1}}$$



How does that look?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
    $endgroup$
    – Clayton
    Feb 2 at 19:15














0












0








0





$begingroup$


I have to find the definite integral of this:



$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$



So let's start with the indefinite integral:



so $x = sec theta$ so $ dx = sec theta tan theta d theta$



So



$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$



$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$



$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$



But now I'm stuck...



EDIT



Unstuck:



$$int frac{cos theta}{sin^2 theta} $$



Let's use $u = sin theta$



$$int frac{1}{u^2} du$$



$$ frac{u^-1}{-1} + c$$



$$- frac{1}{sin theta} + c$$



So given that $ x = sec theta$:



$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$



$$- frac{x}{sqrt{x^2-1}}$$



How does that look?










share|cite|improve this question











$endgroup$




I have to find the definite integral of this:



$$int_2^3 frac{dx}{(x^2-1)^{frac{3}{2}}}$$



So let's start with the indefinite integral:



so $x = sec theta$ so $ dx = sec theta tan theta d theta$



So



$$ frac{sec{x} tan{x}}{(sec^2{x}-1)^{frac{3}{2}}} $$



$$ = int frac{sec{x} tan{x}}{tan x^{frac{3}{2}}}$$



$$= int frac{sec{x}tan{x}}{tan{x}^{frac{1}{2}}}$$



But now I'm stuck...



EDIT



Unstuck:



$$int frac{cos theta}{sin^2 theta} $$



Let's use $u = sin theta$



$$int frac{1}{u^2} du$$



$$ frac{u^-1}{-1} + c$$



$$- frac{1}{sin theta} + c$$



So given that $ x = sec theta$:



$$ - frac{1}{frac{sqrt{x^2-1}}{x}}$$



$$- frac{x}{sqrt{x^2-1}}$$



How does that look?







integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 2 at 19:31







Jwan622

















asked Feb 2 at 19:10









Jwan622Jwan622

2,39011632




2,39011632








  • 1




    $begingroup$
    I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
    $endgroup$
    – Clayton
    Feb 2 at 19:15














  • 1




    $begingroup$
    I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
    $endgroup$
    – Clayton
    Feb 2 at 19:15








1




1




$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15




$begingroup$
I think you need to check on your trigonometric identities again. You made a mistake in writing one of them down (perhaps more, but one mistake is glaring).
$endgroup$
– Clayton
Feb 2 at 19:15










2 Answers
2






active

oldest

votes


















4












$begingroup$

You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.






share|cite|improve this answer









$endgroup$





















    1












    $begingroup$

    $$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$



    For $tan x>0,$



    $$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$



    What if $tan x<0$






    share|cite|improve this answer











    $endgroup$














      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097672%2fhow-to-integrate-this-using-trig-substitution%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4












      $begingroup$

      You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.






      share|cite|improve this answer









      $endgroup$


















        4












        $begingroup$

        You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.






        share|cite|improve this answer









        $endgroup$
















          4












          4








          4





          $begingroup$

          You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.






          share|cite|improve this answer









          $endgroup$



          You made a slight mistake: since $sec^2theta-1=tan^2theta$ you should have $intfrac{secthetatantheta dtheta}{tan^3theta}=intfrac{costheta dtheta}{sin^2theta}$, now use $u=sintheta$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Feb 2 at 19:14









          J.G.J.G.

          33.5k23252




          33.5k23252























              1












              $begingroup$

              $$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$



              For $tan x>0,$



              $$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$



              What if $tan x<0$






              share|cite|improve this answer











              $endgroup$


















                1












                $begingroup$

                $$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$



                For $tan x>0,$



                $$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$



                What if $tan x<0$






                share|cite|improve this answer











                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  $$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$



                  For $tan x>0,$



                  $$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$



                  What if $tan x<0$






                  share|cite|improve this answer











                  $endgroup$



                  $$F=dfrac{sec xtan x}{(tan^2x)^{3/2}}=dfrac{sec xtan x}{|tan^3x|}$$



                  For $tan x>0,$



                  $$F=dfrac{cos x}{sin^2x}=csc xcot x=-dfrac{d(csc x)}{dx}$$



                  What if $tan x<0$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Feb 2 at 19:38

























                  answered Feb 2 at 19:17









                  lab bhattacharjeelab bhattacharjee

                  229k15159279




                  229k15159279






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097672%2fhow-to-integrate-this-using-trig-substitution%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      MongoDB - Not Authorized To Execute Command

                      How to fix TextFormField cause rebuild widget in Flutter

                      in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith