Subgroup of general linear group over $mathbb{F}_{3}$ generated by two matrices
$begingroup$
I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?
abstract-algebra group-theory
$endgroup$
|
show 1 more comment
$begingroup$
I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?
abstract-algebra group-theory
$endgroup$
1
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06
|
show 1 more comment
$begingroup$
I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?
abstract-algebra group-theory
$endgroup$
I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?
abstract-algebra group-theory
abstract-algebra group-theory
edited Feb 3 at 0:48


Sam Hughes
743114
743114
asked Feb 2 at 21:10
ChymaChyma
143
143
1
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06
|
show 1 more comment
1
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06
1
1
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.
The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097805%2fsubgroup-of-general-linear-group-over-mathbbf-3-generated-by-two-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.
The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.
$endgroup$
add a comment |
$begingroup$
We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.
The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.
$endgroup$
add a comment |
$begingroup$
We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.
The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.
$endgroup$
We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.
The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.
answered Feb 2 at 23:44


Sam HughesSam Hughes
743114
743114
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097805%2fsubgroup-of-general-linear-group-over-mathbbf-3-generated-by-two-matrices%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19
$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20
$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46
$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00
$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06