Subgroup of general linear group over $mathbb{F}_{3}$ generated by two matrices












1












$begingroup$


I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is your work on the subject ?
    $endgroup$
    – Jean Marie
    Feb 2 at 21:19










  • $begingroup$
    @JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
    $endgroup$
    – Chyma
    Feb 2 at 21:20










  • $begingroup$
    @JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
    $endgroup$
    – Chyma
    Feb 2 at 21:46












  • $begingroup$
    Are you sure $BABneq A^3$? I get that it does on Mathematica.
    $endgroup$
    – Alec B-G
    Feb 2 at 22:00












  • $begingroup$
    @AlecB-G oops. Thank you!
    $endgroup$
    – Chyma
    Feb 2 at 22:06
















1












$begingroup$


I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is your work on the subject ?
    $endgroup$
    – Jean Marie
    Feb 2 at 21:19










  • $begingroup$
    @JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
    $endgroup$
    – Chyma
    Feb 2 at 21:20










  • $begingroup$
    @JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
    $endgroup$
    – Chyma
    Feb 2 at 21:46












  • $begingroup$
    Are you sure $BABneq A^3$? I get that it does on Mathematica.
    $endgroup$
    – Alec B-G
    Feb 2 at 22:00












  • $begingroup$
    @AlecB-G oops. Thank you!
    $endgroup$
    – Chyma
    Feb 2 at 22:06














1












1








1





$begingroup$


I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?










share|cite|improve this question











$endgroup$




I have two matrices: $A=begin{bmatrix}0 & 2 &1\1 & 2&1\1 &2&0end{bmatrix}$
and $B=begin{bmatrix}2 & 1 &0\0 & 1&0\0 &1&2end{bmatrix}$. I need to describe subgroup generated by these matrices.I know that group generated by A and B, say G, is isomorphic to $Q_{8}$ or $D_{4}$ or $S_{3}$ or $S_{4}$ or $A_{4}$. Any hints?







abstract-algebra group-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 3 at 0:48









Sam Hughes

743114




743114










asked Feb 2 at 21:10









ChymaChyma

143




143








  • 1




    $begingroup$
    What is your work on the subject ?
    $endgroup$
    – Jean Marie
    Feb 2 at 21:19










  • $begingroup$
    @JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
    $endgroup$
    – Chyma
    Feb 2 at 21:20










  • $begingroup$
    @JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
    $endgroup$
    – Chyma
    Feb 2 at 21:46












  • $begingroup$
    Are you sure $BABneq A^3$? I get that it does on Mathematica.
    $endgroup$
    – Alec B-G
    Feb 2 at 22:00












  • $begingroup$
    @AlecB-G oops. Thank you!
    $endgroup$
    – Chyma
    Feb 2 at 22:06














  • 1




    $begingroup$
    What is your work on the subject ?
    $endgroup$
    – Jean Marie
    Feb 2 at 21:19










  • $begingroup$
    @JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
    $endgroup$
    – Chyma
    Feb 2 at 21:20










  • $begingroup$
    @JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
    $endgroup$
    – Chyma
    Feb 2 at 21:46












  • $begingroup$
    Are you sure $BABneq A^3$? I get that it does on Mathematica.
    $endgroup$
    – Alec B-G
    Feb 2 at 22:00












  • $begingroup$
    @AlecB-G oops. Thank you!
    $endgroup$
    – Chyma
    Feb 2 at 22:06








1




1




$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19




$begingroup$
What is your work on the subject ?
$endgroup$
– Jean Marie
Feb 2 at 21:19












$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20




$begingroup$
@JeanMarie i found that $A^4 = 1$ and $B^2 = 1$
$endgroup$
– Chyma
Feb 2 at 21:20












$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46






$begingroup$
@JeanMarie i dont understand. I tried to show that G isomorphic to $D_{4}$ but $BAB = A^{-1}$ fails ( $D_{4} = <x,y|x^4 = y^2 = 1, yxy = x^{-1}>$ if i'm right)
$endgroup$
– Chyma
Feb 2 at 21:46














$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00






$begingroup$
Are you sure $BABneq A^3$? I get that it does on Mathematica.
$endgroup$
– Alec B-G
Feb 2 at 22:00














$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06




$begingroup$
@AlecB-G oops. Thank you!
$endgroup$
– Chyma
Feb 2 at 22:06










1 Answer
1






active

oldest

votes


















1












$begingroup$

We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.



The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.






share|cite|improve this answer









$endgroup$














    Your Answer








    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097805%2fsubgroup-of-general-linear-group-over-mathbbf-3-generated-by-two-matrices%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.



    The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.






    share|cite|improve this answer









    $endgroup$


















      1












      $begingroup$

      We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.



      The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.






      share|cite|improve this answer









      $endgroup$
















        1












        1








        1





        $begingroup$

        We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.



        The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.






        share|cite|improve this answer









        $endgroup$



        We have $A^2=begin{bmatrix}0&0&2\ 0&2&0\ 2&0&0end{bmatrix}$, $A^4=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$, $B^2=begin{bmatrix}1&0&0\ 0&1&0\ 0&0&1end{bmatrix}$ and $BAB=A^{-1}$ since $A^3=A^{-1}=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$ and $BAB=begin{bmatrix}2&1&0\ 2&1&2\ 0&1&2end{bmatrix}$.



        The dihedral group $D_8$ has presentation $langle a,b | a^4=b^2=1, bab=a^{-1}rangle$, clearly $A$ and $B$ satisfy these relations, so we can conclude $langle A,Branglecong D_8$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Feb 2 at 23:44









        Sam HughesSam Hughes

        743114




        743114






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097805%2fsubgroup-of-general-linear-group-over-mathbbf-3-generated-by-two-matrices%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            MongoDB - Not Authorized To Execute Command

            in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

            How to fix TextFormField cause rebuild widget in Flutter