Respresentation of Vectors spanned by basis vectors in a column space. Is the representation correct
$begingroup$
This question is related to coding theory. Consider a generator matrix $G$ of a systematic code. It is of the form $[I_k|P$. Any column in $P$ is a linear combination of some or all columns of$I_k$. Let $I_k$ be denoted by the set
$$ B={overline{m_1},dots,overline{m_k}}$$. Let any $overline{m_i}$ be a part of $n_i$ parity equations in $P$. These columns are denoted by the set
$$overline{m_i}_{(n_i)}$$
I will represent $P$, the parity columns of $G$ as
$$P = bigcup_{i=1}^{k} overline{m_i}_{(n_i)} $$.
Is this representation correct ?
Example: Let $G=[I_4|P]$ be given as
$$G=begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 end{array} $$
where P would be
$$P=begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 end{pmatrix}$$
let the three columns of $P$ be $p_1,p_2,p_3$ and
$p_1=overline{m_1}+overline{m_2}+overline{m_3}$
$p_2=overline{m_2}+overline{m_3}+overline{m_4}$
$p_3=overline{m_1}+overline{m_2}+overline{m_4}$.
Here, $n_1=2,n_2=3,n_3=2,n_4=2$. So,
$$P=overline{m_1}_{(2)} cup overline{m_2}_{(3)} cup overline{m_3}_{(2)} cup overline{m_4}_{(2)}$$
linear-algebra
$endgroup$
add a comment |
$begingroup$
This question is related to coding theory. Consider a generator matrix $G$ of a systematic code. It is of the form $[I_k|P$. Any column in $P$ is a linear combination of some or all columns of$I_k$. Let $I_k$ be denoted by the set
$$ B={overline{m_1},dots,overline{m_k}}$$. Let any $overline{m_i}$ be a part of $n_i$ parity equations in $P$. These columns are denoted by the set
$$overline{m_i}_{(n_i)}$$
I will represent $P$, the parity columns of $G$ as
$$P = bigcup_{i=1}^{k} overline{m_i}_{(n_i)} $$.
Is this representation correct ?
Example: Let $G=[I_4|P]$ be given as
$$G=begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 end{array} $$
where P would be
$$P=begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 end{pmatrix}$$
let the three columns of $P$ be $p_1,p_2,p_3$ and
$p_1=overline{m_1}+overline{m_2}+overline{m_3}$
$p_2=overline{m_2}+overline{m_3}+overline{m_4}$
$p_3=overline{m_1}+overline{m_2}+overline{m_4}$.
Here, $n_1=2,n_2=3,n_3=2,n_4=2$. So,
$$P=overline{m_1}_{(2)} cup overline{m_2}_{(3)} cup overline{m_3}_{(2)} cup overline{m_4}_{(2)}$$
linear-algebra
$endgroup$
add a comment |
$begingroup$
This question is related to coding theory. Consider a generator matrix $G$ of a systematic code. It is of the form $[I_k|P$. Any column in $P$ is a linear combination of some or all columns of$I_k$. Let $I_k$ be denoted by the set
$$ B={overline{m_1},dots,overline{m_k}}$$. Let any $overline{m_i}$ be a part of $n_i$ parity equations in $P$. These columns are denoted by the set
$$overline{m_i}_{(n_i)}$$
I will represent $P$, the parity columns of $G$ as
$$P = bigcup_{i=1}^{k} overline{m_i}_{(n_i)} $$.
Is this representation correct ?
Example: Let $G=[I_4|P]$ be given as
$$G=begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 end{array} $$
where P would be
$$P=begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 end{pmatrix}$$
let the three columns of $P$ be $p_1,p_2,p_3$ and
$p_1=overline{m_1}+overline{m_2}+overline{m_3}$
$p_2=overline{m_2}+overline{m_3}+overline{m_4}$
$p_3=overline{m_1}+overline{m_2}+overline{m_4}$.
Here, $n_1=2,n_2=3,n_3=2,n_4=2$. So,
$$P=overline{m_1}_{(2)} cup overline{m_2}_{(3)} cup overline{m_3}_{(2)} cup overline{m_4}_{(2)}$$
linear-algebra
$endgroup$
This question is related to coding theory. Consider a generator matrix $G$ of a systematic code. It is of the form $[I_k|P$. Any column in $P$ is a linear combination of some or all columns of$I_k$. Let $I_k$ be denoted by the set
$$ B={overline{m_1},dots,overline{m_k}}$$. Let any $overline{m_i}$ be a part of $n_i$ parity equations in $P$. These columns are denoted by the set
$$overline{m_i}_{(n_i)}$$
I will represent $P$, the parity columns of $G$ as
$$P = bigcup_{i=1}^{k} overline{m_i}_{(n_i)} $$.
Is this representation correct ?
Example: Let $G=[I_4|P]$ be given as
$$G=begin{array}{ccccccc} 1 & 0 & 0 & 0 & 1 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 & 1 & 1 \ 0 & 0 & 1 & 0 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 & 1 end{array} $$
where P would be
$$P=begin{pmatrix} 1 & 0 & 1 \ 1 & 1 & 1 \ 1 & 1 & 0 \ 0 & 1 & 1 end{pmatrix}$$
let the three columns of $P$ be $p_1,p_2,p_3$ and
$p_1=overline{m_1}+overline{m_2}+overline{m_3}$
$p_2=overline{m_2}+overline{m_3}+overline{m_4}$
$p_3=overline{m_1}+overline{m_2}+overline{m_4}$.
Here, $n_1=2,n_2=3,n_3=2,n_4=2$. So,
$$P=overline{m_1}_{(2)} cup overline{m_2}_{(3)} cup overline{m_3}_{(2)} cup overline{m_4}_{(2)}$$
linear-algebra
linear-algebra
edited Jan 18 at 12:33
asked Jan 18 at 12:10
user355370
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078162%2frespresentation-of-vectors-spanned-by-basis-vectors-in-a-column-space-is-the-re%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3078162%2frespresentation-of-vectors-spanned-by-basis-vectors-in-a-column-space-is-the-re%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown