Dualization map is surjective












1












$begingroup$


I am practicing for my exam and I want to solve the following problem.



Let $X,Y$ be normed reflexive spaces. Show that the "Dualization map" $':B(X,Y)to B(Y',X')$, $Tmapsto T'$ is surjective



I want to use reflexivity since $X''$ and $X$, likewise for $Y$, are isometrically isomorphic. But I get stuck. Has anybody an idea?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
    $endgroup$
    – Mindlack
    Jan 21 at 17:06










  • $begingroup$
    But I don't know whether $X'$ is reflexive, since $X$ is not Banach
    $endgroup$
    – James
    Jan 21 at 17:18










  • $begingroup$
    If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
    $endgroup$
    – Mindlack
    Jan 21 at 17:22










  • $begingroup$
    You are right :)
    $endgroup$
    – James
    Jan 21 at 17:23
















1












$begingroup$


I am practicing for my exam and I want to solve the following problem.



Let $X,Y$ be normed reflexive spaces. Show that the "Dualization map" $':B(X,Y)to B(Y',X')$, $Tmapsto T'$ is surjective



I want to use reflexivity since $X''$ and $X$, likewise for $Y$, are isometrically isomorphic. But I get stuck. Has anybody an idea?










share|cite|improve this question









$endgroup$












  • $begingroup$
    Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
    $endgroup$
    – Mindlack
    Jan 21 at 17:06










  • $begingroup$
    But I don't know whether $X'$ is reflexive, since $X$ is not Banach
    $endgroup$
    – James
    Jan 21 at 17:18










  • $begingroup$
    If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
    $endgroup$
    – Mindlack
    Jan 21 at 17:22










  • $begingroup$
    You are right :)
    $endgroup$
    – James
    Jan 21 at 17:23














1












1








1





$begingroup$


I am practicing for my exam and I want to solve the following problem.



Let $X,Y$ be normed reflexive spaces. Show that the "Dualization map" $':B(X,Y)to B(Y',X')$, $Tmapsto T'$ is surjective



I want to use reflexivity since $X''$ and $X$, likewise for $Y$, are isometrically isomorphic. But I get stuck. Has anybody an idea?










share|cite|improve this question









$endgroup$




I am practicing for my exam and I want to solve the following problem.



Let $X,Y$ be normed reflexive spaces. Show that the "Dualization map" $':B(X,Y)to B(Y',X')$, $Tmapsto T'$ is surjective



I want to use reflexivity since $X''$ and $X$, likewise for $Y$, are isometrically isomorphic. But I get stuck. Has anybody an idea?







functional-analysis dual-spaces






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 21 at 17:03









JamesJames

936318




936318












  • $begingroup$
    Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
    $endgroup$
    – Mindlack
    Jan 21 at 17:06










  • $begingroup$
    But I don't know whether $X'$ is reflexive, since $X$ is not Banach
    $endgroup$
    – James
    Jan 21 at 17:18










  • $begingroup$
    If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
    $endgroup$
    – Mindlack
    Jan 21 at 17:22










  • $begingroup$
    You are right :)
    $endgroup$
    – James
    Jan 21 at 17:23


















  • $begingroup$
    Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
    $endgroup$
    – Mindlack
    Jan 21 at 17:06










  • $begingroup$
    But I don't know whether $X'$ is reflexive, since $X$ is not Banach
    $endgroup$
    – James
    Jan 21 at 17:18










  • $begingroup$
    If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
    $endgroup$
    – Mindlack
    Jan 21 at 17:22










  • $begingroup$
    You are right :)
    $endgroup$
    – James
    Jan 21 at 17:23
















$begingroup$
Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
$endgroup$
– Mindlack
Jan 21 at 17:06




$begingroup$
Maybe you should try and consider that $X’$ and $Y’$ are reflexive and consider two dualizations starting from $Y’ rightarrow X’$.
$endgroup$
– Mindlack
Jan 21 at 17:06












$begingroup$
But I don't know whether $X'$ is reflexive, since $X$ is not Banach
$endgroup$
– James
Jan 21 at 17:18




$begingroup$
But I don't know whether $X'$ is reflexive, since $X$ is not Banach
$endgroup$
– James
Jan 21 at 17:18












$begingroup$
If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
$endgroup$
– Mindlack
Jan 21 at 17:22




$begingroup$
If you are using the usual definition, if $X$ is reflexive, $X$ is a Banach, no? en.m.wikipedia.org/wiki/Reflexive_space
$endgroup$
– Mindlack
Jan 21 at 17:22












$begingroup$
You are right :)
$endgroup$
– James
Jan 21 at 17:23




$begingroup$
You are right :)
$endgroup$
– James
Jan 21 at 17:23










1 Answer
1






active

oldest

votes


















1












$begingroup$

Hint: for every $U'in B(Y',
X') $



Consider $U"=(U')':X"=Xrightarrow Y"=Y$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
    $endgroup$
    – James
    Jan 21 at 17:37










  • $begingroup$
    You can compute $(U") '=U' $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 18:08










  • $begingroup$
    I don't see what you mean
    $endgroup$
    – James
    Jan 21 at 19:16










  • $begingroup$
    $(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 19:39











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082106%2fdualization-map-is-surjective%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

Hint: for every $U'in B(Y',
X') $



Consider $U"=(U')':X"=Xrightarrow Y"=Y$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
    $endgroup$
    – James
    Jan 21 at 17:37










  • $begingroup$
    You can compute $(U") '=U' $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 18:08










  • $begingroup$
    I don't see what you mean
    $endgroup$
    – James
    Jan 21 at 19:16










  • $begingroup$
    $(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 19:39
















1












$begingroup$

Hint: for every $U'in B(Y',
X') $



Consider $U"=(U')':X"=Xrightarrow Y"=Y$.






share|cite|improve this answer









$endgroup$













  • $begingroup$
    Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
    $endgroup$
    – James
    Jan 21 at 17:37










  • $begingroup$
    You can compute $(U") '=U' $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 18:08










  • $begingroup$
    I don't see what you mean
    $endgroup$
    – James
    Jan 21 at 19:16










  • $begingroup$
    $(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 19:39














1












1








1





$begingroup$

Hint: for every $U'in B(Y',
X') $



Consider $U"=(U')':X"=Xrightarrow Y"=Y$.






share|cite|improve this answer









$endgroup$



Hint: for every $U'in B(Y',
X') $



Consider $U"=(U')':X"=Xrightarrow Y"=Y$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 21 at 17:21









Tsemo AristideTsemo Aristide

59.1k11445




59.1k11445












  • $begingroup$
    Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
    $endgroup$
    – James
    Jan 21 at 17:37










  • $begingroup$
    You can compute $(U") '=U' $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 18:08










  • $begingroup$
    I don't see what you mean
    $endgroup$
    – James
    Jan 21 at 19:16










  • $begingroup$
    $(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 19:39


















  • $begingroup$
    Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
    $endgroup$
    – James
    Jan 21 at 17:37










  • $begingroup$
    You can compute $(U") '=U' $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 18:08










  • $begingroup$
    I don't see what you mean
    $endgroup$
    – James
    Jan 21 at 19:16










  • $begingroup$
    $(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
    $endgroup$
    – Tsemo Aristide
    Jan 21 at 19:39
















$begingroup$
Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
$endgroup$
– James
Jan 21 at 17:37




$begingroup$
Okay so I can show that $U''(x'')(y')=U''(iota_X(x))(y')=iota_X(x)circ U'(y')=U'(y')(x)=y'circ U(x)=i_Y(U(x))(y')$ but I don't really see how this helps
$endgroup$
– James
Jan 21 at 17:37












$begingroup$
You can compute $(U") '=U' $.
$endgroup$
– Tsemo Aristide
Jan 21 at 18:08




$begingroup$
You can compute $(U") '=U' $.
$endgroup$
– Tsemo Aristide
Jan 21 at 18:08












$begingroup$
I don't see what you mean
$endgroup$
– James
Jan 21 at 19:16




$begingroup$
I don't see what you mean
$endgroup$
– James
Jan 21 at 19:16












$begingroup$
$(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
$endgroup$
– Tsemo Aristide
Jan 21 at 19:39




$begingroup$
$(U") '(y') (x) =y'(U"(x)) =(U"(x)) (y') $, identify $U"(x) $ with an element of the bidual. $(U"(x))(y') =x((U'(y')) =U'(y') (x) $.
$endgroup$
– Tsemo Aristide
Jan 21 at 19:39


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082106%2fdualization-map-is-surjective%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith