Interesting missing proof (Prime Number Theorem)
$begingroup$
Let $n in mathbb{N}$, a number large enough.
Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$
If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$
Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$
My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)
$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$
number-theory prime-numbers
$endgroup$
add a comment |
$begingroup$
Let $n in mathbb{N}$, a number large enough.
Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$
If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$
Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$
My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)
$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$
number-theory prime-numbers
$endgroup$
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56
add a comment |
$begingroup$
Let $n in mathbb{N}$, a number large enough.
Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$
If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$
Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$
My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)
$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$
number-theory prime-numbers
$endgroup$
Let $n in mathbb{N}$, a number large enough.
Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$
If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$
Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$
My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)
$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$
number-theory prime-numbers
number-theory prime-numbers
asked Jan 23 at 14:48
LAGRIDALAGRIDA
100110
100110
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56
add a comment |
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$
The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.
$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$
The $O$ constant is uniform in $ c$.
In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result
$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$
The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084551%2finteresting-missing-proof-prime-number-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$
The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.
$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$
The $O$ constant is uniform in $ c$.
In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result
$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$
The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
add a comment |
$begingroup$
For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$
The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.
$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$
The $O$ constant is uniform in $ c$.
In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result
$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$
The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.
$endgroup$
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
add a comment |
$begingroup$
For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$
The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.
$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$
The $O$ constant is uniform in $ c$.
In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result
$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$
The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.
$endgroup$
For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$
The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.
$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$
The $O$ constant is uniform in $ c$.
In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result
$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$
The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.
edited Jan 25 at 11:31
answered Jan 23 at 15:33
reunsreuns
21.2k21351
21.2k21351
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
add a comment |
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo♦
Jan 26 at 3:13
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084551%2finteresting-missing-proof-prime-number-theorem%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34
$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42
$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44
$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56