Interesting missing proof (Prime Number Theorem)












0












$begingroup$


Let $n in mathbb{N}$, a number large enough.



Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$



If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$



Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$



My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)



$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$










share|cite|improve this question









$endgroup$












  • $begingroup$
    I don't see a proof in what you wrote.
    $endgroup$
    – reuns
    Jan 23 at 15:34












  • $begingroup$
    From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:42










  • $begingroup$
    And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:44










  • $begingroup$
    The question is how you evaluate $I_n$. The answer is in my post
    $endgroup$
    – reuns
    Jan 23 at 15:56


















0












$begingroup$


Let $n in mathbb{N}$, a number large enough.



Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$



If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$



Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$



My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)



$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$










share|cite|improve this question









$endgroup$












  • $begingroup$
    I don't see a proof in what you wrote.
    $endgroup$
    – reuns
    Jan 23 at 15:34












  • $begingroup$
    From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:42










  • $begingroup$
    And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:44










  • $begingroup$
    The question is how you evaluate $I_n$. The answer is in my post
    $endgroup$
    – reuns
    Jan 23 at 15:56
















0












0








0





$begingroup$


Let $n in mathbb{N}$, a number large enough.



Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$



If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$



Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$



My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)



$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$










share|cite|improve this question









$endgroup$




Let $n in mathbb{N}$, a number large enough.



Let $q(n)$ be the smallest prime number verify $n< displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a}}$



If $I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$, then : $$I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$$



Using prime number theorem : $dfrac{n}{ln(ln(n))} , e^{-gamma} = dfrac{n}{ln(n)} dfrac{ln(n)}{ln(ln(n))} , e^{-gamma} sim pi(n) big( pi(q(n)) e^{-gamma} big)$



My Question is : there is an other proof that $I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$ ? (not using the proof above! and just this formula without details about $pi(n)$ or $pi(q(n))$)



$I_n$ denote the number of elements less than $n$ and coprime to $displaystyle{small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$







number-theory prime-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Jan 23 at 14:48









LAGRIDALAGRIDA

100110




100110












  • $begingroup$
    I don't see a proof in what you wrote.
    $endgroup$
    – reuns
    Jan 23 at 15:34












  • $begingroup$
    From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:42










  • $begingroup$
    And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:44










  • $begingroup$
    The question is how you evaluate $I_n$. The answer is in my post
    $endgroup$
    – reuns
    Jan 23 at 15:56




















  • $begingroup$
    I don't see a proof in what you wrote.
    $endgroup$
    – reuns
    Jan 23 at 15:34












  • $begingroup$
    From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:42










  • $begingroup$
    And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
    $endgroup$
    – LAGRIDA
    Jan 23 at 15:44










  • $begingroup$
    The question is how you evaluate $I_n$. The answer is in my post
    $endgroup$
    – reuns
    Jan 23 at 15:56


















$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34






$begingroup$
I don't see a proof in what you wrote.
$endgroup$
– reuns
Jan 23 at 15:34














$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42




$begingroup$
From the definition of $q(n)$ we have $displaystyle{small left( prod_{substack{a leq p(n) \ text{a prime}}} {normalsize a} right)} leq n < {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)}$ with $q(n)$ the next prime to $p(n)$. And Mertens 3rd theorem give $displaystyle{small prod_{substack{a leq q(n) \ text{a prime}}} left({normalsize 1-frac{1}{a}}right)} sim frac{e^{-gamma}}{ln(q(n))}$.
$endgroup$
– LAGRIDA
Jan 23 at 15:42












$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44




$begingroup$
And the prime number theorem give $displaystyle ln {small left( prod_{substack{a leq q(n) \ text{a prime}}} {normalsize a} right)} sim q(n)$ and $ln(p(n)) sim ln(q(n)) sim ln(ln(n))$ and that give $displaystyle I_n sim dfrac{n}{lnln(n)} , e^{-gamma}$
$endgroup$
– LAGRIDA
Jan 23 at 15:44












$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56






$begingroup$
The question is how you evaluate $I_n$. The answer is in my post
$endgroup$
– reuns
Jan 23 at 15:56












1 Answer
1






active

oldest

votes


















1












$begingroup$

For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$



The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.





$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$



The $O$ constant is uniform in $ c$.





In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result



$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$





The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Jan 26 at 3:13










  • $begingroup$
    We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
    $endgroup$
    – LAGRIDA
    Feb 13 at 15:38













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084551%2finteresting-missing-proof-prime-number-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$



The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.





$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$



The $O$ constant is uniform in $ c$.





In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result



$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$





The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Jan 26 at 3:13










  • $begingroup$
    We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
    $endgroup$
    – LAGRIDA
    Feb 13 at 15:38


















1












$begingroup$

For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$



The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.





$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$



The $O$ constant is uniform in $ c$.





In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result



$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$





The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Jan 26 at 3:13










  • $begingroup$
    We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
    $endgroup$
    – LAGRIDA
    Feb 13 at 15:38
















1












1








1





$begingroup$

For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$



The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.





$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$



The $O$ constant is uniform in $ c$.





In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result



$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$





The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.






share|cite|improve this answer











$endgroup$



For $c> 0$ fixed, $P_k= prod_{p le k}p ,k to infty$ then $$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} sim c, varphi(P_k)sim c P_k frac{e^{-gamma}}{log k}$$



The proof shows it is also valid for $c$ depending on $k$ not decreasing too fast.





$$sum_{m le c P_k} 1_{gcd(m,P_k) = 1} = sum_{d | P_k} mu(d)sum_{m le c P_k} 1_{d | m} = sum_{d | P_k} mu(d) lfloor frac{c P_k}{d}rfloor = sum_{d | P_k} mu(d) (frac{c P_k}{d}+O(1)) \ = c prod_{p le k} p (1-p^{-1}) + O(tau(P_k))= c varphi(P_k)+O(P_k^epsilon)=c P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon)$$
Where the last step is Mertens third theorem and $tau(m) = sum_{d | m} 1 = O(m^epsilon)$



The $O$ constant is uniform in $ c$.





In your question $q(n) = k$ and $P_k$ is the least primorial above $n$ so $ n = c_n P_k, c_n in (frac{1}{k},1]$ then $ I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}$, $frac1{c_n} = O(k) = O(log P_k)$ so you get the result



$$I_n = sum_{m le c_n P_k} 1_{gcd(m,P_k) = 1}= c_n P_k frac{e^{-gamma}}{log k}+O(P_k^epsilon) = n frac{e^{-gamma}}{log k}+O((kn)^epsilon)= e^{-gamma}frac{n}{log log n}+O(n^{epsilon'})$$





The PNT gives $q(n) sim log(P_k) sim log n$ and $pi(n) sim frac{n}{log n}$ so $I_n sim e^{-gamma}frac{pi(n) q(n)}{log log n} sim e^{-gamma}frac{pi(n) q(n)}{log q(n)}sim e^{-gamma}pi(n) pi(q(n))$ but this is just an obfuscation of the result, to be avoided at all cost.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 25 at 11:31

























answered Jan 23 at 15:33









reunsreuns

21.2k21351




21.2k21351












  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Jan 26 at 3:13










  • $begingroup$
    We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
    $endgroup$
    – LAGRIDA
    Feb 13 at 15:38




















  • $begingroup$
    Comments are not for extended discussion; this conversation has been moved to chat.
    $endgroup$
    – Aloizio Macedo
    Jan 26 at 3:13










  • $begingroup$
    We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
    $endgroup$
    – LAGRIDA
    Feb 13 at 15:38


















$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo
Jan 26 at 3:13




$begingroup$
Comments are not for extended discussion; this conversation has been moved to chat.
$endgroup$
– Aloizio Macedo
Jan 26 at 3:13












$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38






$begingroup$
We need the quantitative missing proof $displaystyle I_n sim pi(n) big( pi(q(n)) e^{-gamma} big)$, and that will give us the proof $displaystyle I_{q(n), m}(n) sim pi_m(n) big( pi(q(n)) , e^{- gamma} big)^2$ and that proove imediately Hardy-LittleWood conjecture : $displaystyle pi_m(n) sim displaystyle{small left( prod_{substack{a | m \ text{a prime}}} {normalsize frac{a-1}{a-2}} right)} 2 , C_2 ; dfrac{n}{ln(n)^2}$
$endgroup$
– LAGRIDA
Feb 13 at 15:38




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3084551%2finteresting-missing-proof-prime-number-theorem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory