What's the answer to $int frac{cos^2x sin x}{sin x - cos x} dx$?
$begingroup$
I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:
Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.
Multiplying and dividing by $cos^2x$ or $sin^2x$.
Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.
I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.
I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.
real-analysis integration indefinite-integrals substitution trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:
Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.
Multiplying and dividing by $cos^2x$ or $sin^2x$.
Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.
I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.
I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.
real-analysis integration indefinite-integrals substitution trigonometric-integrals
$endgroup$
add a comment |
$begingroup$
I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:
Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.
Multiplying and dividing by $cos^2x$ or $sin^2x$.
Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.
I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.
I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.
real-analysis integration indefinite-integrals substitution trigonometric-integrals
$endgroup$
I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:
Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.
Multiplying and dividing by $cos^2x$ or $sin^2x$.
Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.
I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.
I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.
real-analysis integration indefinite-integrals substitution trigonometric-integrals
real-analysis integration indefinite-integrals substitution trigonometric-integrals
edited Jan 21 at 18:47
Michael Rozenberg
107k1894199
107k1894199
asked Jan 21 at 17:22


Sashank SriramSashank Sriram
444
444
add a comment |
add a comment |
6 Answers
6
active
oldest
votes
$begingroup$
$$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
$$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
Can you end it now?
$endgroup$
add a comment |
$begingroup$
Hint:
Let $dfracpi4-x=y$
$sin x-cos x=sqrt2sin y$
$sin x=dfrac{cos y-sin y}{sqrt2}$
$2cos^2x=1+cos2x=1+2sin ycos y$
$$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$
$endgroup$
add a comment |
$begingroup$
Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$
So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$
Now writting
$2sin x=(sin x+cos x)+(sin x-cos x)$
and $cos (2x)=cos^2 x-sin^2 x.$
$endgroup$
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
add a comment |
$begingroup$
A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.
$endgroup$
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
add a comment |
$begingroup$
try it with $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
You will get this integral $$int frac{4 t
left(t^2-1right)^2}{left(t^2+1
right)^3 left(t^2+2 t-1right)}dt$$
and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
left( {t}^{2}+1 right) ^{2}}}right)
dt$$
$endgroup$
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
add a comment |
$begingroup$
For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.
Here notice the differential form
$$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
begin{align}
I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
&= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
&= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
end{align}
Now let $t = tan x$. Doing so yields
begin{align}
I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
&= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
&= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
&= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
end{align}
or after playing around with a few trignometric identities
$$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082128%2fwhats-the-answer-to-int-frac-cos2x-sin-x-sin-x-cos-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
$$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
Can you end it now?
$endgroup$
add a comment |
$begingroup$
$$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
$$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
Can you end it now?
$endgroup$
add a comment |
$begingroup$
$$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
$$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
Can you end it now?
$endgroup$
$$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
$$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
$$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
$$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
Can you end it now?
answered Jan 21 at 17:56
Michael RozenbergMichael Rozenberg
107k1894199
107k1894199
add a comment |
add a comment |
$begingroup$
Hint:
Let $dfracpi4-x=y$
$sin x-cos x=sqrt2sin y$
$sin x=dfrac{cos y-sin y}{sqrt2}$
$2cos^2x=1+cos2x=1+2sin ycos y$
$$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$
$endgroup$
add a comment |
$begingroup$
Hint:
Let $dfracpi4-x=y$
$sin x-cos x=sqrt2sin y$
$sin x=dfrac{cos y-sin y}{sqrt2}$
$2cos^2x=1+cos2x=1+2sin ycos y$
$$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$
$endgroup$
add a comment |
$begingroup$
Hint:
Let $dfracpi4-x=y$
$sin x-cos x=sqrt2sin y$
$sin x=dfrac{cos y-sin y}{sqrt2}$
$2cos^2x=1+cos2x=1+2sin ycos y$
$$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$
$endgroup$
Hint:
Let $dfracpi4-x=y$
$sin x-cos x=sqrt2sin y$
$sin x=dfrac{cos y-sin y}{sqrt2}$
$2cos^2x=1+cos2x=1+2sin ycos y$
$$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$
answered Jan 21 at 18:30
lab bhattacharjeelab bhattacharjee
226k15157275
226k15157275
add a comment |
add a comment |
$begingroup$
Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$
So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$
Now writting
$2sin x=(sin x+cos x)+(sin x-cos x)$
and $cos (2x)=cos^2 x-sin^2 x.$
$endgroup$
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
add a comment |
$begingroup$
Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$
So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$
Now writting
$2sin x=(sin x+cos x)+(sin x-cos x)$
and $cos (2x)=cos^2 x-sin^2 x.$
$endgroup$
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
add a comment |
$begingroup$
Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$
So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$
Now writting
$2sin x=(sin x+cos x)+(sin x-cos x)$
and $cos (2x)=cos^2 x-sin^2 x.$
$endgroup$
Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$
So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$
Now writting
$2sin x=(sin x+cos x)+(sin x-cos x)$
and $cos (2x)=cos^2 x-sin^2 x.$
edited Jan 21 at 21:18
answered Jan 21 at 17:30
DXTDXT
5,9992732
5,9992732
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
add a comment |
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
1
1
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
$begingroup$
$2cos^2 x=1+cos2x $.
$endgroup$
– Thomas Shelby
Jan 21 at 17:37
add a comment |
$begingroup$
A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.
$endgroup$
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
add a comment |
$begingroup$
A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.
$endgroup$
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
add a comment |
$begingroup$
A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.
$endgroup$
A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.
answered Jan 21 at 17:32
lightxbulblightxbulb
1,055311
1,055311
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
add a comment |
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
No, doesn't work
$endgroup$
– Sashank Sriram
Jan 21 at 17:46
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
It does though.
$endgroup$
– lightxbulb
Jan 21 at 17:54
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
$begingroup$
Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
$endgroup$
– lightxbulb
Jan 21 at 18:00
add a comment |
$begingroup$
try it with $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
You will get this integral $$int frac{4 t
left(t^2-1right)^2}{left(t^2+1
right)^3 left(t^2+2 t-1right)}dt$$
and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
left( {t}^{2}+1 right) ^{2}}}right)
dt$$
$endgroup$
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
add a comment |
$begingroup$
try it with $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
You will get this integral $$int frac{4 t
left(t^2-1right)^2}{left(t^2+1
right)^3 left(t^2+2 t-1right)}dt$$
and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
left( {t}^{2}+1 right) ^{2}}}right)
dt$$
$endgroup$
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
add a comment |
$begingroup$
try it with $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
You will get this integral $$int frac{4 t
left(t^2-1right)^2}{left(t^2+1
right)^3 left(t^2+2 t-1right)}dt$$
and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
left( {t}^{2}+1 right) ^{2}}}right)
dt$$
$endgroup$
try it with $$sin(x)=frac{2t}{1+t^2}$$
$$cos(x)=frac{1-t^2}{1+t^2}$$
$$dx=frac{2dt}{1+t^2}$$
You will get this integral $$int frac{4 t
left(t^2-1right)^2}{left(t^2+1
right)^3 left(t^2+2 t-1right)}dt$$
and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
left( {t}^{2}+1 right) ^{2}}}right)
dt$$
edited Jan 21 at 18:07
answered Jan 21 at 17:31


Dr. Sonnhard GraubnerDr. Sonnhard Graubner
77k42866
77k42866
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
add a comment |
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
$begingroup$
Going by that method got me to a messy fraction, that lead me nowhere
$endgroup$
– Sashank Sriram
Jan 21 at 17:48
add a comment |
$begingroup$
For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.
Here notice the differential form
$$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
begin{align}
I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
&= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
&= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
end{align}
Now let $t = tan x$. Doing so yields
begin{align}
I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
&= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
&= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
&= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
end{align}
or after playing around with a few trignometric identities
$$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$
$endgroup$
add a comment |
$begingroup$
For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.
Here notice the differential form
$$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
begin{align}
I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
&= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
&= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
end{align}
Now let $t = tan x$. Doing so yields
begin{align}
I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
&= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
&= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
&= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
end{align}
or after playing around with a few trignometric identities
$$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$
$endgroup$
add a comment |
$begingroup$
For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.
Here notice the differential form
$$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
begin{align}
I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
&= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
&= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
end{align}
Now let $t = tan x$. Doing so yields
begin{align}
I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
&= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
&= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
&= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
end{align}
or after playing around with a few trignometric identities
$$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$
$endgroup$
For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.
Here notice the differential form
$$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
begin{align}
I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
&= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
&= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
end{align}
Now let $t = tan x$. Doing so yields
begin{align}
I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
&= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
&= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
&= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
end{align}
or after playing around with a few trignometric identities
$$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$
answered Jan 22 at 2:48


omegadotomegadot
6,4172829
6,4172829
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082128%2fwhats-the-answer-to-int-frac-cos2x-sin-x-sin-x-cos-x-dx%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown