What's the answer to $int frac{cos^2x sin x}{sin x - cos x} dx$?












4












$begingroup$


I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:




  1. Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.


  2. Multiplying and dividing by $cos^2x$ or $sin^2x$.


  3. Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.


  4. I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.


  5. I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.











share|cite|improve this question











$endgroup$

















    4












    $begingroup$


    I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:




    1. Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.


    2. Multiplying and dividing by $cos^2x$ or $sin^2x$.


    3. Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.


    4. I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.


    5. I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.











    share|cite|improve this question











    $endgroup$















      4












      4








      4


      1



      $begingroup$


      I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:




      1. Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.


      2. Multiplying and dividing by $cos^2x$ or $sin^2x$.


      3. Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.


      4. I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.


      5. I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.











      share|cite|improve this question











      $endgroup$




      I tried solving the integral $$int frac{cos^2x sin x}{sin x - cos x}, dx$$ the following ways:




      1. Expressing each function in the form of $tan left(frac{x}{2}right)$, $cos left(frac{x}{2}right),$ and $,sin left(frac{x}{2}right),$ independently, but that didn't go well for me.


      2. Multiplying and dividing by $cos^2x$ or $sin^2x$.


      3. Expressing $cos^2x$ as $1-sin^2x$ and splitting the integral, and I was stuck with $int left(frac{sin^3x}{sin x - cos x}right), dx$ which I rewrote as $int frac{csc^2x}{csc^4x (1-cot x) } dx,,$ and tried a whole range of substitutions only to fail.


      4. I tried to substitute $frac{1}{ sin x - cos x}$, $frac{sin x}{ sin x - cos x}$, $frac{cos x sin x}{ sin x - cos x}$ and $frac{cos^2x sin x}{sin x - cos x},$ independently, none of which seemed to work out.


      5. I expressed the denominator as $sinleft(frac{pi}{4}-xright)$ and tried multiplying and dividing by $sinleft(frac{pi}{4}+xright)$, and carried out some substitutions. Then, I repeated the same with $cosleft(frac{pi}{4}+xright)$. Neither of them worked.








      real-analysis integration indefinite-integrals substitution trigonometric-integrals






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 21 at 18:47









      Michael Rozenberg

      107k1894199




      107k1894199










      asked Jan 21 at 17:22









      Sashank SriramSashank Sriram

      444




      444






















          6 Answers
          6






          active

          oldest

          votes


















          5












          $begingroup$

          $$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
          $$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
          $$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
          $$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
          $$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
          $$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
          Can you end it now?






          share|cite|improve this answer









          $endgroup$





















            3












            $begingroup$

            Hint:



            Let $dfracpi4-x=y$



            $sin x-cos x=sqrt2sin y$



            $sin x=dfrac{cos y-sin y}{sqrt2}$



            $2cos^2x=1+cos2x=1+2sin ycos y$



            $$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$






            share|cite|improve this answer









            $endgroup$





















              3












              $begingroup$

              Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$



              So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$



              Now writting



              $2sin x=(sin x+cos x)+(sin x-cos x)$



              and $cos (2x)=cos^2 x-sin^2 x.$






              share|cite|improve this answer











              $endgroup$









              • 1




                $begingroup$
                $2cos^2 x=1+cos2x $.
                $endgroup$
                – Thomas Shelby
                Jan 21 at 17:37



















              2












              $begingroup$

              A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.






              share|cite|improve this answer









              $endgroup$













              • $begingroup$
                No, doesn't work
                $endgroup$
                – Sashank Sriram
                Jan 21 at 17:46










              • $begingroup$
                It does though.
                $endgroup$
                – lightxbulb
                Jan 21 at 17:54










              • $begingroup$
                Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                $endgroup$
                – lightxbulb
                Jan 21 at 18:00





















              2












              $begingroup$

              try it with $$sin(x)=frac{2t}{1+t^2}$$
              $$cos(x)=frac{1-t^2}{1+t^2}$$
              $$dx=frac{2dt}{1+t^2}$$
              You will get this integral $$int frac{4 t
              left(t^2-1right)^2}{left(t^2+1
              right)^3 left(t^2+2 t-1right)}dt$$

              and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
              right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
              left( {t}^{2}+1 right) ^{2}}}right)
              dt$$






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                Going by that method got me to a messy fraction, that lead me nowhere
                $endgroup$
                – Sashank Sriram
                Jan 21 at 17:48



















              1












              $begingroup$

              For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.



              Here notice the differential form
              $$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
              is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
              begin{align}
              I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
              &= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
              &= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
              end{align}

              Now let $t = tan x$. Doing so yields
              begin{align}
              I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
              &= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
              &= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
              &= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
              end{align}

              or after playing around with a few trignometric identities
              $$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$






              share|cite|improve this answer









              $endgroup$













                Your Answer





                StackExchange.ifUsing("editor", function () {
                return StackExchange.using("mathjaxEditing", function () {
                StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                });
                });
                }, "mathjax-editing");

                StackExchange.ready(function() {
                var channelOptions = {
                tags: "".split(" "),
                id: "69"
                };
                initTagRenderer("".split(" "), "".split(" "), channelOptions);

                StackExchange.using("externalEditor", function() {
                // Have to fire editor after snippets, if snippets enabled
                if (StackExchange.settings.snippets.snippetsEnabled) {
                StackExchange.using("snippets", function() {
                createEditor();
                });
                }
                else {
                createEditor();
                }
                });

                function createEditor() {
                StackExchange.prepareEditor({
                heartbeatType: 'answer',
                autoActivateHeartbeat: false,
                convertImagesToLinks: true,
                noModals: true,
                showLowRepImageUploadWarning: true,
                reputationToPostImages: 10,
                bindNavPrevention: true,
                postfix: "",
                imageUploader: {
                brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                allowUrls: true
                },
                noCode: true, onDemand: true,
                discardSelector: ".discard-answer"
                ,immediatelyShowMarkdownHelp:true
                });


                }
                });














                draft saved

                draft discarded


















                StackExchange.ready(
                function () {
                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082128%2fwhats-the-answer-to-int-frac-cos2x-sin-x-sin-x-cos-x-dx%23new-answer', 'question_page');
                }
                );

                Post as a guest















                Required, but never shown

























                6 Answers
                6






                active

                oldest

                votes








                6 Answers
                6






                active

                oldest

                votes









                active

                oldest

                votes






                active

                oldest

                votes









                5












                $begingroup$

                $$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
                $$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                $$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                $$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                $$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                $$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
                Can you end it now?






                share|cite|improve this answer









                $endgroup$


















                  5












                  $begingroup$

                  $$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
                  $$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                  $$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                  $$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                  $$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                  $$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
                  Can you end it now?






                  share|cite|improve this answer









                  $endgroup$
















                    5












                    5








                    5





                    $begingroup$

                    $$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
                    $$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                    $$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                    $$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                    $$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                    $$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
                    Can you end it now?






                    share|cite|improve this answer









                    $endgroup$



                    $$intfrac{cos^2xsin{x}}{sin{x}-cos{x}}dx=$$
                    $$=intleft(frac{cos^2xsin{x}}{sin{x}-cos{x}}+frac{1}{2}sin{x}(sin{x}+cos{x})right)dx-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                    $$=frac{1}{2}intfrac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}intsin{x}(sin{x}+cos{x})dx=$$
                    $$=frac{1}{2}intleft(frac{sin{x}}{sin{x}-cos{x}}-frac{1}{2}right)dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                    $$=frac{1}{4}intfrac{sin{x}+cos{x}}{sin{x}-cos{x}}dx-frac{1}{2}intleft(sin{x}(sin{x}+cos{x})-frac{1}{2}right)dx=$$
                    $$=frac{1}{4}ln|sin{x}-cos{x}|-frac{1}{4}intleft(2sin^2{x}-1+sin2xright)dx.$$
                    Can you end it now?







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 21 at 17:56









                    Michael RozenbergMichael Rozenberg

                    107k1894199




                    107k1894199























                        3












                        $begingroup$

                        Hint:



                        Let $dfracpi4-x=y$



                        $sin x-cos x=sqrt2sin y$



                        $sin x=dfrac{cos y-sin y}{sqrt2}$



                        $2cos^2x=1+cos2x=1+2sin ycos y$



                        $$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$






                        share|cite|improve this answer









                        $endgroup$


















                          3












                          $begingroup$

                          Hint:



                          Let $dfracpi4-x=y$



                          $sin x-cos x=sqrt2sin y$



                          $sin x=dfrac{cos y-sin y}{sqrt2}$



                          $2cos^2x=1+cos2x=1+2sin ycos y$



                          $$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$






                          share|cite|improve this answer









                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            Hint:



                            Let $dfracpi4-x=y$



                            $sin x-cos x=sqrt2sin y$



                            $sin x=dfrac{cos y-sin y}{sqrt2}$



                            $2cos^2x=1+cos2x=1+2sin ycos y$



                            $$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$






                            share|cite|improve this answer









                            $endgroup$



                            Hint:



                            Let $dfracpi4-x=y$



                            $sin x-cos x=sqrt2sin y$



                            $sin x=dfrac{cos y-sin y}{sqrt2}$



                            $2cos^2x=1+cos2x=1+2sin ycos y$



                            $$dfrac{(cos y-sin y)(1+2sin ycos y)}{sin y}=2cos^2y-2sin ycos y+cot y-1=cos2y-sin2y+cot y$$







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered Jan 21 at 18:30









                            lab bhattacharjeelab bhattacharjee

                            226k15157275




                            226k15157275























                                3












                                $begingroup$

                                Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$



                                So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$



                                Now writting



                                $2sin x=(sin x+cos x)+(sin x-cos x)$



                                and $cos (2x)=cos^2 x-sin^2 x.$






                                share|cite|improve this answer











                                $endgroup$









                                • 1




                                  $begingroup$
                                  $2cos^2 x=1+cos2x $.
                                  $endgroup$
                                  – Thomas Shelby
                                  Jan 21 at 17:37
















                                3












                                $begingroup$

                                Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$



                                So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$



                                Now writting



                                $2sin x=(sin x+cos x)+(sin x-cos x)$



                                and $cos (2x)=cos^2 x-sin^2 x.$






                                share|cite|improve this answer











                                $endgroup$









                                • 1




                                  $begingroup$
                                  $2cos^2 x=1+cos2x $.
                                  $endgroup$
                                  – Thomas Shelby
                                  Jan 21 at 17:37














                                3












                                3








                                3





                                $begingroup$

                                Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$



                                So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$



                                Now writting



                                $2sin x=(sin x+cos x)+(sin x-cos x)$



                                and $cos (2x)=cos^2 x-sin^2 x.$






                                share|cite|improve this answer











                                $endgroup$



                                Let $displaystyle I =frac{1}{2}intfrac{2cos^2 xcdot sin x}{sin x-cos x}dx=frac{1}{2}intfrac{(1+cos 2x)cdot sin x}{sin x-cos x}dx$



                                So $displaystyle I =frac{1}{4}int frac{2sin x}{sin x-cos x}dx+frac{1}{2}intfrac{cos 2xcdot sin x}{sin x-cos x}dx$



                                Now writting



                                $2sin x=(sin x+cos x)+(sin x-cos x)$



                                and $cos (2x)=cos^2 x-sin^2 x.$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jan 21 at 21:18

























                                answered Jan 21 at 17:30









                                DXTDXT

                                5,9992732




                                5,9992732








                                • 1




                                  $begingroup$
                                  $2cos^2 x=1+cos2x $.
                                  $endgroup$
                                  – Thomas Shelby
                                  Jan 21 at 17:37














                                • 1




                                  $begingroup$
                                  $2cos^2 x=1+cos2x $.
                                  $endgroup$
                                  – Thomas Shelby
                                  Jan 21 at 17:37








                                1




                                1




                                $begingroup$
                                $2cos^2 x=1+cos2x $.
                                $endgroup$
                                – Thomas Shelby
                                Jan 21 at 17:37




                                $begingroup$
                                $2cos^2 x=1+cos2x $.
                                $endgroup$
                                – Thomas Shelby
                                Jan 21 at 17:37











                                2












                                $begingroup$

                                A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  No, doesn't work
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:46










                                • $begingroup$
                                  It does though.
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 17:54










                                • $begingroup$
                                  Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 18:00


















                                2












                                $begingroup$

                                A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.






                                share|cite|improve this answer









                                $endgroup$













                                • $begingroup$
                                  No, doesn't work
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:46










                                • $begingroup$
                                  It does though.
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 17:54










                                • $begingroup$
                                  Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 18:00
















                                2












                                2








                                2





                                $begingroup$

                                A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.






                                share|cite|improve this answer









                                $endgroup$



                                A standard substitution for integrals of rational functions of trigonometric ones is $t=tan frac{x}{2}$.







                                share|cite|improve this answer












                                share|cite|improve this answer



                                share|cite|improve this answer










                                answered Jan 21 at 17:32









                                lightxbulblightxbulb

                                1,055311




                                1,055311












                                • $begingroup$
                                  No, doesn't work
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:46










                                • $begingroup$
                                  It does though.
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 17:54










                                • $begingroup$
                                  Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 18:00




















                                • $begingroup$
                                  No, doesn't work
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:46










                                • $begingroup$
                                  It does though.
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 17:54










                                • $begingroup$
                                  Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                  $endgroup$
                                  – lightxbulb
                                  Jan 21 at 18:00


















                                $begingroup$
                                No, doesn't work
                                $endgroup$
                                – Sashank Sriram
                                Jan 21 at 17:46




                                $begingroup$
                                No, doesn't work
                                $endgroup$
                                – Sashank Sriram
                                Jan 21 at 17:46












                                $begingroup$
                                It does though.
                                $endgroup$
                                – lightxbulb
                                Jan 21 at 17:54




                                $begingroup$
                                It does though.
                                $endgroup$
                                – lightxbulb
                                Jan 21 at 17:54












                                $begingroup$
                                Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                $endgroup$
                                – lightxbulb
                                Jan 21 at 18:00






                                $begingroup$
                                Then learn how to integrate rational functions: sosmath.com/calculus/integration/rational/rational.html @Sashank Sriram
                                $endgroup$
                                – lightxbulb
                                Jan 21 at 18:00













                                2












                                $begingroup$

                                try it with $$sin(x)=frac{2t}{1+t^2}$$
                                $$cos(x)=frac{1-t^2}{1+t^2}$$
                                $$dx=frac{2dt}{1+t^2}$$
                                You will get this integral $$int frac{4 t
                                left(t^2-1right)^2}{left(t^2+1
                                right)^3 left(t^2+2 t-1right)}dt$$

                                and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
                                right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
                                left( {t}^{2}+1 right) ^{2}}}right)
                                dt$$






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  Going by that method got me to a messy fraction, that lead me nowhere
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:48
















                                2












                                $begingroup$

                                try it with $$sin(x)=frac{2t}{1+t^2}$$
                                $$cos(x)=frac{1-t^2}{1+t^2}$$
                                $$dx=frac{2dt}{1+t^2}$$
                                You will get this integral $$int frac{4 t
                                left(t^2-1right)^2}{left(t^2+1
                                right)^3 left(t^2+2 t-1right)}dt$$

                                and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
                                right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
                                left( {t}^{2}+1 right) ^{2}}}right)
                                dt$$






                                share|cite|improve this answer











                                $endgroup$













                                • $begingroup$
                                  Going by that method got me to a messy fraction, that lead me nowhere
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:48














                                2












                                2








                                2





                                $begingroup$

                                try it with $$sin(x)=frac{2t}{1+t^2}$$
                                $$cos(x)=frac{1-t^2}{1+t^2}$$
                                $$dx=frac{2dt}{1+t^2}$$
                                You will get this integral $$int frac{4 t
                                left(t^2-1right)^2}{left(t^2+1
                                right)^3 left(t^2+2 t-1right)}dt$$

                                and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
                                right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
                                left( {t}^{2}+1 right) ^{2}}}right)
                                dt$$






                                share|cite|improve this answer











                                $endgroup$



                                try it with $$sin(x)=frac{2t}{1+t^2}$$
                                $$cos(x)=frac{1-t^2}{1+t^2}$$
                                $$dx=frac{2dt}{1+t^2}$$
                                You will get this integral $$int frac{4 t
                                left(t^2-1right)^2}{left(t^2+1
                                right)^3 left(t^2+2 t-1right)}dt$$

                                and this is $$int left(1/2,{frac {-t+1}{{t}^{2}+1}}+{frac {-4,t+4}{ left( {t}^{2}+1
                                right) ^{3}}}+1/2,{frac {t+1}{{t}^{2}+2,t-1}}+{frac {2,t-4}{
                                left( {t}^{2}+1 right) ^{2}}}right)
                                dt$$







                                share|cite|improve this answer














                                share|cite|improve this answer



                                share|cite|improve this answer








                                edited Jan 21 at 18:07

























                                answered Jan 21 at 17:31









                                Dr. Sonnhard GraubnerDr. Sonnhard Graubner

                                77k42866




                                77k42866












                                • $begingroup$
                                  Going by that method got me to a messy fraction, that lead me nowhere
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:48


















                                • $begingroup$
                                  Going by that method got me to a messy fraction, that lead me nowhere
                                  $endgroup$
                                  – Sashank Sriram
                                  Jan 21 at 17:48
















                                $begingroup$
                                Going by that method got me to a messy fraction, that lead me nowhere
                                $endgroup$
                                – Sashank Sriram
                                Jan 21 at 17:48




                                $begingroup$
                                Going by that method got me to a messy fraction, that lead me nowhere
                                $endgroup$
                                – Sashank Sriram
                                Jan 21 at 17:48











                                1












                                $begingroup$

                                For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.



                                Here notice the differential form
                                $$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
                                is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
                                begin{align}
                                I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
                                &= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
                                &= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
                                end{align}

                                Now let $t = tan x$. Doing so yields
                                begin{align}
                                I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
                                &= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
                                &= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
                                &= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
                                end{align}

                                or after playing around with a few trignometric identities
                                $$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$






                                share|cite|improve this answer









                                $endgroup$


















                                  1












                                  $begingroup$

                                  For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.



                                  Here notice the differential form
                                  $$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
                                  is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
                                  begin{align}
                                  I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
                                  &= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
                                  &= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
                                  end{align}

                                  Now let $t = tan x$. Doing so yields
                                  begin{align}
                                  I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
                                  &= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
                                  &= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
                                  &= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
                                  end{align}

                                  or after playing around with a few trignometric identities
                                  $$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$






                                  share|cite|improve this answer









                                  $endgroup$
















                                    1












                                    1








                                    1





                                    $begingroup$

                                    For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.



                                    Here notice the differential form
                                    $$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
                                    is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
                                    begin{align}
                                    I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
                                    &= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
                                    &= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
                                    end{align}

                                    Now let $t = tan x$. Doing so yields
                                    begin{align}
                                    I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
                                    &= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
                                    &= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
                                    &= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
                                    end{align}

                                    or after playing around with a few trignometric identities
                                    $$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$






                                    share|cite|improve this answer









                                    $endgroup$



                                    For integrands that are a rational function of sine and cosine, as a guide to what trigonometric substitution one may try the Bioche Rules can be used.



                                    Here notice the differential form
                                    $$w(x) = f(sin x, cos x) , dx = frac{cos^2 x sin x}{sin x - cos x} , dx$$
                                    is invariant under the substitution $x mapsto pi + x$, that is, $w(pi + x) = w(x)$. This suggests a substitution of $t = tan x$ can be used. As $dt = sec^2 x , dx$ we rewrite the integrand as the product between a rational function consisting of $tan x$ terms and a $sec^2 x$ terms. Doing so we have
                                    begin{align}
                                    I &= int frac{cos^2 x sin x}{sin x - cos x} , dx\
                                    &= int frac{cos^2 x sin x}{sin x - cos x} cdot frac{sec^2 x}{sec^2 x} , dx\
                                    &= int frac{tan x}{(tan x - 1)(1 + tan^2 x)^2} cdot sec^2 x , dx.
                                    end{align}

                                    Now let $t = tan x$. Doing so yields
                                    begin{align}
                                    I &= int frac{t}{(t - 1)(1 + t^2)^2} , dt\
                                    &= int left [frac{1}{4(t - 1)} - frac{t + 1}{4(t^2 + 1)} + frac{1 - t}{2(1 + t^2)^2} right ] , dt\
                                    &= frac{1}{4} ln |t - 1| - frac{1}{8} ln |1 + t^2| + frac{t}{4(1 + t^2)} + C\
                                    &= frac{1}{4}ln |tan x - 1| + frac{1}{4} ln |cos x| + frac{1}{4} (1 + tan x) cos^2 x + C.
                                    end{align}

                                    or after playing around with a few trignometric identities
                                    $$int frac{cos^2 x sin x}{sin x - cos x} , dx = frac{1}{4} ln |sin x - cos x| + frac{1}{8} (cos 2x + sin 2x) + C.$$







                                    share|cite|improve this answer












                                    share|cite|improve this answer



                                    share|cite|improve this answer










                                    answered Jan 22 at 2:48









                                    omegadotomegadot

                                    6,4172829




                                    6,4172829






























                                        draft saved

                                        draft discarded




















































                                        Thanks for contributing an answer to Mathematics Stack Exchange!


                                        • Please be sure to answer the question. Provide details and share your research!

                                        But avoid



                                        • Asking for help, clarification, or responding to other answers.

                                        • Making statements based on opinion; back them up with references or personal experience.


                                        Use MathJax to format equations. MathJax reference.


                                        To learn more, see our tips on writing great answers.




                                        draft saved


                                        draft discarded














                                        StackExchange.ready(
                                        function () {
                                        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3082128%2fwhats-the-answer-to-int-frac-cos2x-sin-x-sin-x-cos-x-dx%23new-answer', 'question_page');
                                        }
                                        );

                                        Post as a guest















                                        Required, but never shown





















































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown

































                                        Required, but never shown














                                        Required, but never shown












                                        Required, but never shown







                                        Required, but never shown







                                        Popular posts from this blog

                                        MongoDB - Not Authorized To Execute Command

                                        in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                        How to fix TextFormField cause rebuild widget in Flutter