Rational solutions of $x^4(k^2+4)-4kx^2=z^2$, where $k>0$ is given rational.
$begingroup$
How to generate some parametric family of rational solutions to $x^4(k^2+4)-4kx^2=z^2$, where $k>0$ is given rational.
number-theory diophantine-equations parametrization
$endgroup$
add a comment |
$begingroup$
How to generate some parametric family of rational solutions to $x^4(k^2+4)-4kx^2=z^2$, where $k>0$ is given rational.
number-theory diophantine-equations parametrization
$endgroup$
add a comment |
$begingroup$
How to generate some parametric family of rational solutions to $x^4(k^2+4)-4kx^2=z^2$, where $k>0$ is given rational.
number-theory diophantine-equations parametrization
$endgroup$
How to generate some parametric family of rational solutions to $x^4(k^2+4)-4kx^2=z^2$, where $k>0$ is given rational.
number-theory diophantine-equations parametrization
number-theory diophantine-equations parametrization
edited Feb 2 at 19:03
ersh
asked Feb 2 at 18:57


ershersh
538113
538113
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
For $k=4$, Above equation is shown below:
$20x^4=(4x)^2+z^2$ ------(A)
Equation $(A)$ has parametric solution:
$x=2p(5m^2-4m+1)$
$z=16(p^2)(25m^4-45m^3+30m^2-9m+1)$
Where, $p=[1/(5m^2-1)]$
For $m=3$ we have:
$(x,z,k)=[(17/11),(1054/121),(4)]$
$endgroup$
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
add a comment |
$begingroup$
The equation can be written
begin{equation*}
x^2((k^2+4)x^2-4k)=z^2
end{equation*}
and, so we need
begin{equation*}
(k^2+4)x^2-4k=y^2
end{equation*}
If $x=1$, then $y=pm (k-2)$, so the line $y=k-2+m(x-1)$ will meet the quadric at the further point
begin{equation*}
x=frac{-(k^2-2km+m^2+4m+4)}{k^2-m^2+4}
end{equation*}
For example, if $k=1/2$, putting $m=4$ gives
begin{equation*}
z^2=frac{3^2*5^2*43^2*103^2}{2^2*47^4}
end{equation*}
Allan Macleod
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097650%2frational-solutions-of-x4k24-4kx2-z2-where-k0-is-given-rational%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $k=4$, Above equation is shown below:
$20x^4=(4x)^2+z^2$ ------(A)
Equation $(A)$ has parametric solution:
$x=2p(5m^2-4m+1)$
$z=16(p^2)(25m^4-45m^3+30m^2-9m+1)$
Where, $p=[1/(5m^2-1)]$
For $m=3$ we have:
$(x,z,k)=[(17/11),(1054/121),(4)]$
$endgroup$
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
add a comment |
$begingroup$
For $k=4$, Above equation is shown below:
$20x^4=(4x)^2+z^2$ ------(A)
Equation $(A)$ has parametric solution:
$x=2p(5m^2-4m+1)$
$z=16(p^2)(25m^4-45m^3+30m^2-9m+1)$
Where, $p=[1/(5m^2-1)]$
For $m=3$ we have:
$(x,z,k)=[(17/11),(1054/121),(4)]$
$endgroup$
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
add a comment |
$begingroup$
For $k=4$, Above equation is shown below:
$20x^4=(4x)^2+z^2$ ------(A)
Equation $(A)$ has parametric solution:
$x=2p(5m^2-4m+1)$
$z=16(p^2)(25m^4-45m^3+30m^2-9m+1)$
Where, $p=[1/(5m^2-1)]$
For $m=3$ we have:
$(x,z,k)=[(17/11),(1054/121),(4)]$
$endgroup$
For $k=4$, Above equation is shown below:
$20x^4=(4x)^2+z^2$ ------(A)
Equation $(A)$ has parametric solution:
$x=2p(5m^2-4m+1)$
$z=16(p^2)(25m^4-45m^3+30m^2-9m+1)$
Where, $p=[1/(5m^2-1)]$
For $m=3$ we have:
$(x,z,k)=[(17/11),(1054/121),(4)]$
answered Feb 3 at 10:11
SamSam
261
261
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
add a comment |
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
$begingroup$
@ Sam, How did you arrived at that parametric solution?
$endgroup$
– ersh
Feb 3 at 14:33
1
1
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
$begingroup$
Equation (A) is equivalent to (5x^2-4)=[(z)/(2x)]^2=(y)^2
$endgroup$
– Sam
Feb 3 at 23:10
1
1
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Since (x,z)=(2,16) is numerical solution of equation (A), it implies (y) =(4). Hence parametrize (5x^2-4)=y^2 at (x,y) =(2,4). After arriving at parameter's of (x,y) we use the equality (z)=( 2xy) to find (z)
$endgroup$
– Sam
Feb 3 at 23:17
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
$begingroup$
Good Thank you!!
$endgroup$
– ersh
Feb 3 at 23:26
add a comment |
$begingroup$
The equation can be written
begin{equation*}
x^2((k^2+4)x^2-4k)=z^2
end{equation*}
and, so we need
begin{equation*}
(k^2+4)x^2-4k=y^2
end{equation*}
If $x=1$, then $y=pm (k-2)$, so the line $y=k-2+m(x-1)$ will meet the quadric at the further point
begin{equation*}
x=frac{-(k^2-2km+m^2+4m+4)}{k^2-m^2+4}
end{equation*}
For example, if $k=1/2$, putting $m=4$ gives
begin{equation*}
z^2=frac{3^2*5^2*43^2*103^2}{2^2*47^4}
end{equation*}
Allan Macleod
$endgroup$
add a comment |
$begingroup$
The equation can be written
begin{equation*}
x^2((k^2+4)x^2-4k)=z^2
end{equation*}
and, so we need
begin{equation*}
(k^2+4)x^2-4k=y^2
end{equation*}
If $x=1$, then $y=pm (k-2)$, so the line $y=k-2+m(x-1)$ will meet the quadric at the further point
begin{equation*}
x=frac{-(k^2-2km+m^2+4m+4)}{k^2-m^2+4}
end{equation*}
For example, if $k=1/2$, putting $m=4$ gives
begin{equation*}
z^2=frac{3^2*5^2*43^2*103^2}{2^2*47^4}
end{equation*}
Allan Macleod
$endgroup$
add a comment |
$begingroup$
The equation can be written
begin{equation*}
x^2((k^2+4)x^2-4k)=z^2
end{equation*}
and, so we need
begin{equation*}
(k^2+4)x^2-4k=y^2
end{equation*}
If $x=1$, then $y=pm (k-2)$, so the line $y=k-2+m(x-1)$ will meet the quadric at the further point
begin{equation*}
x=frac{-(k^2-2km+m^2+4m+4)}{k^2-m^2+4}
end{equation*}
For example, if $k=1/2$, putting $m=4$ gives
begin{equation*}
z^2=frac{3^2*5^2*43^2*103^2}{2^2*47^4}
end{equation*}
Allan Macleod
$endgroup$
The equation can be written
begin{equation*}
x^2((k^2+4)x^2-4k)=z^2
end{equation*}
and, so we need
begin{equation*}
(k^2+4)x^2-4k=y^2
end{equation*}
If $x=1$, then $y=pm (k-2)$, so the line $y=k-2+m(x-1)$ will meet the quadric at the further point
begin{equation*}
x=frac{-(k^2-2km+m^2+4m+4)}{k^2-m^2+4}
end{equation*}
For example, if $k=1/2$, putting $m=4$ gives
begin{equation*}
z^2=frac{3^2*5^2*43^2*103^2}{2^2*47^4}
end{equation*}
Allan Macleod
edited Feb 3 at 15:51
answered Feb 3 at 10:00


Allan MacLeodAllan MacLeod
1,24975
1,24975
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3097650%2frational-solutions-of-x4k24-4kx2-z2-where-k0-is-given-rational%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown