Calculate $limlimits_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$












6












$begingroup$


$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$



I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
    $endgroup$
    – Peter Foreman
    Jan 27 at 8:53
















6












$begingroup$


$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$



I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.










share|cite|improve this question











$endgroup$












  • $begingroup$
    It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
    $endgroup$
    – Peter Foreman
    Jan 27 at 8:53














6












6








6


1



$begingroup$


$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$



I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.










share|cite|improve this question











$endgroup$




$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$



I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.







calculus limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 8:52









DonAntonio

180k1494233




180k1494233










asked Jan 27 at 8:45









DaniVajaDaniVaja

977




977












  • $begingroup$
    It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
    $endgroup$
    – Peter Foreman
    Jan 27 at 8:53


















  • $begingroup$
    It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
    $endgroup$
    – Peter Foreman
    Jan 27 at 8:53
















$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53




$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53










2 Answers
2






active

oldest

votes


















8












$begingroup$

Hint



$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I did it!Thanks a lot!
    $endgroup$
    – DaniVaja
    Jan 27 at 9:08






  • 1




    $begingroup$
    @DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 9:10










  • $begingroup$
    I don’t understand what the small trick does though
    $endgroup$
    – Chase Ryan Taylor
    Jan 28 at 2:32



















0












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}




Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
    $endgroup$
    – Felix Marin
    Jan 28 at 2:20











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089290%2fcalculate-lim-limits-n-rightarrow-infty-sum-k-1n-frac6kk1k3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









8












$begingroup$

Hint



$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I did it!Thanks a lot!
    $endgroup$
    – DaniVaja
    Jan 27 at 9:08






  • 1




    $begingroup$
    @DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 9:10










  • $begingroup$
    I don’t understand what the small trick does though
    $endgroup$
    – Chase Ryan Taylor
    Jan 28 at 2:32
















8












$begingroup$

Hint



$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$






share|cite|improve this answer









$endgroup$













  • $begingroup$
    I did it!Thanks a lot!
    $endgroup$
    – DaniVaja
    Jan 27 at 9:08






  • 1




    $begingroup$
    @DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 9:10










  • $begingroup$
    I don’t understand what the small trick does though
    $endgroup$
    – Chase Ryan Taylor
    Jan 28 at 2:32














8












8








8





$begingroup$

Hint



$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$






share|cite|improve this answer









$endgroup$



Hint



$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Jan 27 at 8:58









Claude LeiboviciClaude Leibovici

125k1158135




125k1158135












  • $begingroup$
    I did it!Thanks a lot!
    $endgroup$
    – DaniVaja
    Jan 27 at 9:08






  • 1




    $begingroup$
    @DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 9:10










  • $begingroup$
    I don’t understand what the small trick does though
    $endgroup$
    – Chase Ryan Taylor
    Jan 28 at 2:32


















  • $begingroup$
    I did it!Thanks a lot!
    $endgroup$
    – DaniVaja
    Jan 27 at 9:08






  • 1




    $begingroup$
    @DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
    $endgroup$
    – Claude Leibovici
    Jan 27 at 9:10










  • $begingroup$
    I don’t understand what the small trick does though
    $endgroup$
    – Chase Ryan Taylor
    Jan 28 at 2:32
















$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08




$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08




1




1




$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10




$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10












$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32




$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32











0












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}




Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
    $endgroup$
    – Felix Marin
    Jan 28 at 2:20
















0












$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}




Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$







share|cite|improve this answer











$endgroup$













  • $begingroup$
    @ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
    $endgroup$
    – Felix Marin
    Jan 28 at 2:20














0












0








0





$begingroup$

$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}




Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$







share|cite|improve this answer











$endgroup$



$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}




Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$








share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 28 at 2:12

























answered Jan 28 at 2:03









Felix MarinFelix Marin

68.8k7109146




68.8k7109146












  • $begingroup$
    @ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
    $endgroup$
    – Felix Marin
    Jan 28 at 2:20


















  • $begingroup$
    @ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
    $endgroup$
    – Felix Marin
    Jan 28 at 2:20
















$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20




$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089290%2fcalculate-lim-limits-n-rightarrow-infty-sum-k-1n-frac6kk1k3%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

Npm cannot find a required file even through it is in the searched directory