Calculate $limlimits_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$
$begingroup$
$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$
I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.
calculus limits
$endgroup$
add a comment |
$begingroup$
$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$
I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.
calculus limits
$endgroup$
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53
add a comment |
$begingroup$
$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$
I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.
calculus limits
$endgroup$
$$lim_{nrightarrow infty }sum_{k=1}^{n}frac{6}{k(k+1)(k+3)}$$
I tried to simplify the sum and I got $frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}$ but I can't use this to simplify the terms.Also,I tried to amplify with $k+2$ and I got $$frac{(k+3)-1}{k(k+1)(k+2)(k+3)}=frac{(k+3)}{k(k+1)(k+2)(k+3)}-frac{1}{k(k+1)(k+2)(k+3)}$$ but the terms also don't simplify.
calculus limits
calculus limits
edited Jan 27 at 8:52
DonAntonio
180k1494233
180k1494233
asked Jan 27 at 8:45
DaniVajaDaniVaja
977
977
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53
add a comment |
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint
$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$
$endgroup$
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}
Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$
$endgroup$
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089290%2fcalculate-lim-limits-n-rightarrow-infty-sum-k-1n-frac6kk1k3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$
$endgroup$
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
add a comment |
$begingroup$
Hint
$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$
$endgroup$
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
add a comment |
$begingroup$
Hint
$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$
$endgroup$
Hint
$$frac{2}{k}-frac{3}{k+1}+frac{1}{k+3}=frac{2}{k}-frac{2}{k+1}-frac{1}{k+1}+frac{1}{k+3}=2left(frac{1}{k}-frac{1}{k+1} right)-left(frac{1}{k+1}-frac{1}{k+3} right)$$
answered Jan 27 at 8:58
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
add a comment |
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
$begingroup$
I did it!Thanks a lot!
$endgroup$
– DaniVaja
Jan 27 at 9:08
1
1
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
@DaniVaja. Good to know and you are very welcome ! Remember the small trick since you will need it more than once. Cheers.
$endgroup$
– Claude Leibovici
Jan 27 at 9:10
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
$begingroup$
I don’t understand what the small trick does though
$endgroup$
– Chase Ryan Taylor
Jan 28 at 2:32
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}
Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$
$endgroup$
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}
Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$
$endgroup$
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
add a comment |
$begingroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}
Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$
$endgroup$
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$
begin{align}
&bbox[10px,#ffd]{sum_{k = 1}^{infty}{6 over kpars{k + 1}pars{k+ 3}}} =
6sum_{k = 1}^{infty}2int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
{1 over pars{k + u_{1} + 2u_{2}}^{3}}
\[5mm] = &
12int_{0}^{1}dd u_{1}int_{0}^{u_{1}}dd u_{2},
underbrace{sum_{k = 1}^{infty}{1 over pars{k + u_{1} + 2u_{2}}^{3}}}
_{ds{-Psi''pars{1 + u_{1} + 2u_{2}}/2}}qquad
pars{~Psi: Digamma Function~}
\[5mm] = &
-3int_{0}^{1}dd u_{1}bracks{Psi, 'pars{1 + 3u_{1}} -
Psi, 'pars{1 + u_{1}}}
\[5mm] = &
-3bracks{{1 over 3},Psipars{1 + 3u_{1}} - Psipars{1 + u_{1}}}_{ 0}^{ 1} =
-
Psipars{4} + 3Psipars{2} + Psipars{1} - 3Psipars{1}
\[5mm] = &
3 underbrace{bracks{Psipars{2} - Psipars{1}}}_{ds{= 1}} -
underbrace{bracks{Psipars{4} - Psipars{1}}}
_{ds{= {11 over 6}}} = bbx{7 over 6}
end{align}
Note that $quadleft{begin{array}{rclcl}
ds{Psipars{2}} & ds{=} & ds{Psipars{1} + {1 over 1}} &&
\[1mm]
ds{Psipars{3}} & ds{=} & ds{Psipars{2} + {1 over 2}}
& ds{=} & ds{Psipars{1} + {3 over 2}}
\[1mm]
ds{Psipars{4}} & ds{=} & ds{Psipars{3} + {1 over 3}}
& ds{=} & ds{Psipars{1} + {11 over 6}}
end{array}right.$
edited Jan 28 at 2:12
answered Jan 28 at 2:03


Felix MarinFelix Marin
68.8k7109146
68.8k7109146
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
add a comment |
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
$begingroup$
@ChaseRyanTaylor Yes. That's quite true. Indeed, I was testing Feynman Parametrization.
$endgroup$
– Felix Marin
Jan 28 at 2:20
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089290%2fcalculate-lim-limits-n-rightarrow-infty-sum-k-1n-frac6kk1k3%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It looks like your first simplified version can get you the answer. Just start writing out the first few terms and see what cancels out.
$endgroup$
– Peter Foreman
Jan 27 at 8:53