Prove $gcd(a,m) mid gcd(ab,m)$ $forall a,b,m in Bbb Z$












1












$begingroup$


I named $gcd(a,m) = d$ and $gcd(ab,m) = d' $



So I know that $dmid a$, $dmid m $ and $d'mid ab $ , $d' mid m$



But I can't use the transitive property of divisibility here.



How can I prove that $d mid d'$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 27 at 10:37
















1












$begingroup$


I named $gcd(a,m) = d$ and $gcd(ab,m) = d' $



So I know that $dmid a$, $dmid m $ and $d'mid ab $ , $d' mid m$



But I can't use the transitive property of divisibility here.



How can I prove that $d mid d'$?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 27 at 10:37














1












1








1





$begingroup$


I named $gcd(a,m) = d$ and $gcd(ab,m) = d' $



So I know that $dmid a$, $dmid m $ and $d'mid ab $ , $d' mid m$



But I can't use the transitive property of divisibility here.



How can I prove that $d mid d'$?










share|cite|improve this question











$endgroup$




I named $gcd(a,m) = d$ and $gcd(ab,m) = d' $



So I know that $dmid a$, $dmid m $ and $d'mid ab $ , $d' mid m$



But I can't use the transitive property of divisibility here.



How can I prove that $d mid d'$?







elementary-number-theory divisibility greatest-common-divisor






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 20:03









J. W. Tanner

3,7451320




3,7451320










asked Jan 27 at 10:25









Computer DreamComputer Dream

84




84








  • 1




    $begingroup$
    If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 27 at 10:37














  • 1




    $begingroup$
    If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
    $endgroup$
    – Lord Shark the Unknown
    Jan 27 at 10:37








1




1




$begingroup$
If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
$endgroup$
– Lord Shark the Unknown
Jan 27 at 10:37




$begingroup$
If $gmid a$ and $gmid m$, then $gmid ab$ and $gmid m$.
$endgroup$
– Lord Shark the Unknown
Jan 27 at 10:37










1 Answer
1






active

oldest

votes


















1












$begingroup$

For each $xmid gcd(a,m)$, $xmid a,m$ so $xmid ab,m$ and $xmidgcd(ab,m)$.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089381%2fprove-gcda-m-mid-gcdab-m-forall-a-b-m-in-bbb-z%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1












    $begingroup$

    For each $xmid gcd(a,m)$, $xmid a,m$ so $xmid ab,m$ and $xmidgcd(ab,m)$.






    share|cite|improve this answer











    $endgroup$


















      1












      $begingroup$

      For each $xmid gcd(a,m)$, $xmid a,m$ so $xmid ab,m$ and $xmidgcd(ab,m)$.






      share|cite|improve this answer











      $endgroup$
















        1












        1








        1





        $begingroup$

        For each $xmid gcd(a,m)$, $xmid a,m$ so $xmid ab,m$ and $xmidgcd(ab,m)$.






        share|cite|improve this answer











        $endgroup$



        For each $xmid gcd(a,m)$, $xmid a,m$ so $xmid ab,m$ and $xmidgcd(ab,m)$.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Jan 27 at 10:44

























        answered Jan 27 at 10:30









        YiFanYiFan

        4,7861727




        4,7861727






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089381%2fprove-gcda-m-mid-gcdab-m-forall-a-b-m-in-bbb-z%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            'app-layout' is not a known element: how to share Component with different Modules

            android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

            WPF add header to Image with URL pettitions [duplicate]