Linear version of Gronwall's inequality, proof
$begingroup$
I am reading a proof of the following theorem:
Assume $phi$ is a continuous function in $[0,T]$ that satisfies $$phi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, hspace{0.5mm} tin [0,T], $$ where $alpha, gamma in mathbb{R}$ and $beta > 0$. Then $$phi(t) leq alpha e^{beta t} + frac{gamma}{beta}(e^{beta t} - 1), hspace{0.5mm} tin [0,T]. $$
The proof begins by setting $$psi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, $$ in order to obtain $$psi'(t) leq beta psi(t) + gamma implies psi'(t) - beta psi(t) leq gamma implies left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t}. $$
After this, it says that this implies that $e^{-beta t} psi(t) - psi(0) leq frac{gamma}{beta}(1-e^{-beta t}), $ and this is what confuses me.
I think that $$left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t} implies e^{-beta t} psi(t) leq -frac{gamma}{beta}e^{-beta t}, $$ but does subtracting $psi(0) = alpha$ on the left-hand side somehow correspond to adding $gamma / beta$ on the right-hand side? I don't see how it would.
UPDATE
Could it be that I have to integrate $gamma e^{-beta t} $ from $0$ to $t$? Because then that would be $frac{gamma}{beta}(1-e^{-beta t})$. But then I am still confused about what allows us to subtract $psi(0)$ from the left-hand side.
ordinary-differential-equations inequality integral-inequality
$endgroup$
add a comment |
$begingroup$
I am reading a proof of the following theorem:
Assume $phi$ is a continuous function in $[0,T]$ that satisfies $$phi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, hspace{0.5mm} tin [0,T], $$ where $alpha, gamma in mathbb{R}$ and $beta > 0$. Then $$phi(t) leq alpha e^{beta t} + frac{gamma}{beta}(e^{beta t} - 1), hspace{0.5mm} tin [0,T]. $$
The proof begins by setting $$psi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, $$ in order to obtain $$psi'(t) leq beta psi(t) + gamma implies psi'(t) - beta psi(t) leq gamma implies left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t}. $$
After this, it says that this implies that $e^{-beta t} psi(t) - psi(0) leq frac{gamma}{beta}(1-e^{-beta t}), $ and this is what confuses me.
I think that $$left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t} implies e^{-beta t} psi(t) leq -frac{gamma}{beta}e^{-beta t}, $$ but does subtracting $psi(0) = alpha$ on the left-hand side somehow correspond to adding $gamma / beta$ on the right-hand side? I don't see how it would.
UPDATE
Could it be that I have to integrate $gamma e^{-beta t} $ from $0$ to $t$? Because then that would be $frac{gamma}{beta}(1-e^{-beta t})$. But then I am still confused about what allows us to subtract $psi(0)$ from the left-hand side.
ordinary-differential-equations inequality integral-inequality
$endgroup$
add a comment |
$begingroup$
I am reading a proof of the following theorem:
Assume $phi$ is a continuous function in $[0,T]$ that satisfies $$phi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, hspace{0.5mm} tin [0,T], $$ where $alpha, gamma in mathbb{R}$ and $beta > 0$. Then $$phi(t) leq alpha e^{beta t} + frac{gamma}{beta}(e^{beta t} - 1), hspace{0.5mm} tin [0,T]. $$
The proof begins by setting $$psi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, $$ in order to obtain $$psi'(t) leq beta psi(t) + gamma implies psi'(t) - beta psi(t) leq gamma implies left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t}. $$
After this, it says that this implies that $e^{-beta t} psi(t) - psi(0) leq frac{gamma}{beta}(1-e^{-beta t}), $ and this is what confuses me.
I think that $$left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t} implies e^{-beta t} psi(t) leq -frac{gamma}{beta}e^{-beta t}, $$ but does subtracting $psi(0) = alpha$ on the left-hand side somehow correspond to adding $gamma / beta$ on the right-hand side? I don't see how it would.
UPDATE
Could it be that I have to integrate $gamma e^{-beta t} $ from $0$ to $t$? Because then that would be $frac{gamma}{beta}(1-e^{-beta t})$. But then I am still confused about what allows us to subtract $psi(0)$ from the left-hand side.
ordinary-differential-equations inequality integral-inequality
$endgroup$
I am reading a proof of the following theorem:
Assume $phi$ is a continuous function in $[0,T]$ that satisfies $$phi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, hspace{0.5mm} tin [0,T], $$ where $alpha, gamma in mathbb{R}$ and $beta > 0$. Then $$phi(t) leq alpha e^{beta t} + frac{gamma}{beta}(e^{beta t} - 1), hspace{0.5mm} tin [0,T]. $$
The proof begins by setting $$psi(t) = alpha + int_0^t (beta phi(s) + gamma)ds, $$ in order to obtain $$psi'(t) leq beta psi(t) + gamma implies psi'(t) - beta psi(t) leq gamma implies left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t}. $$
After this, it says that this implies that $e^{-beta t} psi(t) - psi(0) leq frac{gamma}{beta}(1-e^{-beta t}), $ and this is what confuses me.
I think that $$left(e^{-beta t} psi(t) right)' leq gamma e^{-beta t} implies e^{-beta t} psi(t) leq -frac{gamma}{beta}e^{-beta t}, $$ but does subtracting $psi(0) = alpha$ on the left-hand side somehow correspond to adding $gamma / beta$ on the right-hand side? I don't see how it would.
UPDATE
Could it be that I have to integrate $gamma e^{-beta t} $ from $0$ to $t$? Because then that would be $frac{gamma}{beta}(1-e^{-beta t})$. But then I am still confused about what allows us to subtract $psi(0)$ from the left-hand side.
ordinary-differential-equations inequality integral-inequality
ordinary-differential-equations inequality integral-inequality
edited Jan 27 at 3:57
j.eee
asked Jan 27 at 3:45
j.eeej.eee
787
787
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089107%2flinear-version-of-gronwalls-inequality-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089107%2flinear-version-of-gronwalls-inequality-proof%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown