Maximizing $ (4a-3b)^2+(5b-4c)^2+(3c-5a)^2$, such that $a^2+b^2+c^2=1 $
$begingroup$
If $$a^2+b^2+c^2=1 $$here a,b,c are the real numbers then find the maximum value of $$ (4a-3b)^2+(5b-4c)^2+(3c-5a)^2$$
I tried to think with vectors, that is direction cosines of lines.
But then the expression is not getting simplified.
inequality optimization quadratics maxima-minima
$endgroup$
add a comment |
$begingroup$
If $$a^2+b^2+c^2=1 $$here a,b,c are the real numbers then find the maximum value of $$ (4a-3b)^2+(5b-4c)^2+(3c-5a)^2$$
I tried to think with vectors, that is direction cosines of lines.
But then the expression is not getting simplified.
inequality optimization quadratics maxima-minima
$endgroup$
1
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52
add a comment |
$begingroup$
If $$a^2+b^2+c^2=1 $$here a,b,c are the real numbers then find the maximum value of $$ (4a-3b)^2+(5b-4c)^2+(3c-5a)^2$$
I tried to think with vectors, that is direction cosines of lines.
But then the expression is not getting simplified.
inequality optimization quadratics maxima-minima
$endgroup$
If $$a^2+b^2+c^2=1 $$here a,b,c are the real numbers then find the maximum value of $$ (4a-3b)^2+(5b-4c)^2+(3c-5a)^2$$
I tried to think with vectors, that is direction cosines of lines.
But then the expression is not getting simplified.
inequality optimization quadratics maxima-minima
inequality optimization quadratics maxima-minima
edited Jan 27 at 6:38
Michael Rozenberg
109k1895200
109k1895200
asked Jan 27 at 2:41


Math_centricMath_centric
233
233
1
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52
add a comment |
1
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52
1
1
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52
add a comment |
5 Answers
5
active
oldest
votes
$begingroup$
try opening the brackets.
square terms with coeeficents combine them
replace $$ a^2+b^2$$ type terms with $$c^2$$.
you have
$$ 50-(3a+4b+5c)^2$$
$endgroup$
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
add a comment |
$begingroup$
Using the method of Lagrange multipliers, consider
$$F= (4a-3b)^2+(5b-4c)^2+(3c-5a)^2+lambda(a^2+b^2+c^2-1) tag 1$$ Computing the partial derivatives
$$frac{partial F}{partial a}=8 (4 a-3 b)-10 (3 c-5 a)+2 a lambda tag 2$$
$$frac{partial F}{partial b}=-6 (4 a-3 b)+10 (5 b-4 c)+2 b lambdatag 3$$
$$frac{partial F}{partial c}=6 (3 c-5 a)-8 (5 b-4 c)+2 c lambdatag 4$$
$$frac{partial F}{partial lambda}=a^2+b^2+c^2-1tag 5$$
From $(2)$, $b=frac{1}{12} (a lambda +41 a-15 c)$; plug in $(3)$ to get $c=frac{1}{15} (a lambda +25 a)$ which makes $b=frac{4 }{3}a$; plug $b$ and $c$ in $(4)$ to get
$$frac{2}{15} a lambda (lambda +50)=0 tag 6$$ So, we have three cases : $a=0$ , $lambda=0$, $lambda=-50$.
The first case $a=0$ can be discarded since it would make $a=b=c=0$ which does not satisfy the constraint.
The second case $lambda=0$ would make $c=frac{5 }{3}a$ which, in turn, would make $frac{50 }{9}a^2=1$ from the constraint and then the value of the expression to maximize would just be $0$.
So, what is left is the case $lambda=-50$ which makes $c=-frac{5 }{3}a$ which gives again $frac{50 }{9}a^2=1$ from the constraint. The expression to maximize if then $frac{a^2 lambda ^2}{9}$ with $lambda=-50$ and $frac{50 }{9}a^2=1$ which then gives a maximum vzlue of $50$.
I let you finishing what could be required.
$endgroup$
add a comment |
$begingroup$
We need to find a minimal value of $k$ for which the following inequality is true for all reals $a$, $b$ and $c$.
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2leq k(a^2+b^2+c^2)$$ or
$$(k-41)a^2+(k-34)b^2+(k-25)c^2+24ab+40bc+30acgeq0$$ or
$$(k-41)a^2+6(4b+5c)a+(k-34)b^2+40bc+(k-25)c^2geq0,$$ for which we need
$$k>41$$ and
$$9(4b+5c)^2-(k-41)((k-34)b^2+40bc+(k-25)c^2)leq0$$ or
$$(k^2-75k+1250)b^2+(k^2-66k+800)c^2+40(k-50)bcgeq0$$ or
$$(k-50)((k-25)b^2+(k-16)c^2+40bc)geq0.$$
But $$(k-25)b^2+(k-16)c^2+40bcgeq16b^2+25c^2+40bc=(4b+5c)^2geq0,$$ which gives $$kgeq50.$$
For $k=50$ we obtain $$9a^2+6(4b+5c)a+(4b+5c)^2geq0$$ or
$$(3a+4b+5c)^2geq0,$$ which gives that the equality occurs for $$3a+4b+5c=0$$ and $$a^2+b^2+c^2=1,$$
which says that $50$ is a maximal value.
$endgroup$
add a comment |
$begingroup$
Use the technique of Lagrange multipliers to solve.
Essentially, if $$f(a,b,c) = a^2 + b^2 + c^2,$$ $$g(a,b,c) = (4a-3b)^2+(5b-4c)^2+(3c-5a)^2,$$ then find the values $(a,b,c)$ such that $vec nabla f$ is parallel to $vec nabla g$.
Then, by a bit of testing on your solutions, select the one that satisfies $f(a,b,c) = 1$ and is a maximum of $g(a,b,c)$ (as opposed to a minimum or saddle point, for instance).
$endgroup$
add a comment |
$begingroup$
Assume $vec{A}=ahat{i}+bhat{j}+chat{k}$ and $vec{B}=3hat{i}+4hat{j}+5hat{k}$
$$bigg|vec{A}times vec{B}bigg|^2=bigg|vec{A}bigg|^2bigg|vec{B}bigg|^2-bigg(vec{A}cdotvec{B}bigg)^2$$
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2=50-(3a+4b+5c)^2leq 50$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089074%2fmaximizing-4a-3b25b-4c23c-5a2-such-that-a2b2c2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
5 Answers
5
active
oldest
votes
5 Answers
5
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
try opening the brackets.
square terms with coeeficents combine them
replace $$ a^2+b^2$$ type terms with $$c^2$$.
you have
$$ 50-(3a+4b+5c)^2$$
$endgroup$
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
add a comment |
$begingroup$
try opening the brackets.
square terms with coeeficents combine them
replace $$ a^2+b^2$$ type terms with $$c^2$$.
you have
$$ 50-(3a+4b+5c)^2$$
$endgroup$
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
add a comment |
$begingroup$
try opening the brackets.
square terms with coeeficents combine them
replace $$ a^2+b^2$$ type terms with $$c^2$$.
you have
$$ 50-(3a+4b+5c)^2$$
$endgroup$
try opening the brackets.
square terms with coeeficents combine them
replace $$ a^2+b^2$$ type terms with $$c^2$$.
you have
$$ 50-(3a+4b+5c)^2$$
answered Jan 27 at 4:10


mavericmaveric
88512
88512
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
add a comment |
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
1
1
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
$begingroup$
this is the shortest and perfect solution.
$endgroup$
– Math_centric
Jan 29 at 11:22
add a comment |
$begingroup$
Using the method of Lagrange multipliers, consider
$$F= (4a-3b)^2+(5b-4c)^2+(3c-5a)^2+lambda(a^2+b^2+c^2-1) tag 1$$ Computing the partial derivatives
$$frac{partial F}{partial a}=8 (4 a-3 b)-10 (3 c-5 a)+2 a lambda tag 2$$
$$frac{partial F}{partial b}=-6 (4 a-3 b)+10 (5 b-4 c)+2 b lambdatag 3$$
$$frac{partial F}{partial c}=6 (3 c-5 a)-8 (5 b-4 c)+2 c lambdatag 4$$
$$frac{partial F}{partial lambda}=a^2+b^2+c^2-1tag 5$$
From $(2)$, $b=frac{1}{12} (a lambda +41 a-15 c)$; plug in $(3)$ to get $c=frac{1}{15} (a lambda +25 a)$ which makes $b=frac{4 }{3}a$; plug $b$ and $c$ in $(4)$ to get
$$frac{2}{15} a lambda (lambda +50)=0 tag 6$$ So, we have three cases : $a=0$ , $lambda=0$, $lambda=-50$.
The first case $a=0$ can be discarded since it would make $a=b=c=0$ which does not satisfy the constraint.
The second case $lambda=0$ would make $c=frac{5 }{3}a$ which, in turn, would make $frac{50 }{9}a^2=1$ from the constraint and then the value of the expression to maximize would just be $0$.
So, what is left is the case $lambda=-50$ which makes $c=-frac{5 }{3}a$ which gives again $frac{50 }{9}a^2=1$ from the constraint. The expression to maximize if then $frac{a^2 lambda ^2}{9}$ with $lambda=-50$ and $frac{50 }{9}a^2=1$ which then gives a maximum vzlue of $50$.
I let you finishing what could be required.
$endgroup$
add a comment |
$begingroup$
Using the method of Lagrange multipliers, consider
$$F= (4a-3b)^2+(5b-4c)^2+(3c-5a)^2+lambda(a^2+b^2+c^2-1) tag 1$$ Computing the partial derivatives
$$frac{partial F}{partial a}=8 (4 a-3 b)-10 (3 c-5 a)+2 a lambda tag 2$$
$$frac{partial F}{partial b}=-6 (4 a-3 b)+10 (5 b-4 c)+2 b lambdatag 3$$
$$frac{partial F}{partial c}=6 (3 c-5 a)-8 (5 b-4 c)+2 c lambdatag 4$$
$$frac{partial F}{partial lambda}=a^2+b^2+c^2-1tag 5$$
From $(2)$, $b=frac{1}{12} (a lambda +41 a-15 c)$; plug in $(3)$ to get $c=frac{1}{15} (a lambda +25 a)$ which makes $b=frac{4 }{3}a$; plug $b$ and $c$ in $(4)$ to get
$$frac{2}{15} a lambda (lambda +50)=0 tag 6$$ So, we have three cases : $a=0$ , $lambda=0$, $lambda=-50$.
The first case $a=0$ can be discarded since it would make $a=b=c=0$ which does not satisfy the constraint.
The second case $lambda=0$ would make $c=frac{5 }{3}a$ which, in turn, would make $frac{50 }{9}a^2=1$ from the constraint and then the value of the expression to maximize would just be $0$.
So, what is left is the case $lambda=-50$ which makes $c=-frac{5 }{3}a$ which gives again $frac{50 }{9}a^2=1$ from the constraint. The expression to maximize if then $frac{a^2 lambda ^2}{9}$ with $lambda=-50$ and $frac{50 }{9}a^2=1$ which then gives a maximum vzlue of $50$.
I let you finishing what could be required.
$endgroup$
add a comment |
$begingroup$
Using the method of Lagrange multipliers, consider
$$F= (4a-3b)^2+(5b-4c)^2+(3c-5a)^2+lambda(a^2+b^2+c^2-1) tag 1$$ Computing the partial derivatives
$$frac{partial F}{partial a}=8 (4 a-3 b)-10 (3 c-5 a)+2 a lambda tag 2$$
$$frac{partial F}{partial b}=-6 (4 a-3 b)+10 (5 b-4 c)+2 b lambdatag 3$$
$$frac{partial F}{partial c}=6 (3 c-5 a)-8 (5 b-4 c)+2 c lambdatag 4$$
$$frac{partial F}{partial lambda}=a^2+b^2+c^2-1tag 5$$
From $(2)$, $b=frac{1}{12} (a lambda +41 a-15 c)$; plug in $(3)$ to get $c=frac{1}{15} (a lambda +25 a)$ which makes $b=frac{4 }{3}a$; plug $b$ and $c$ in $(4)$ to get
$$frac{2}{15} a lambda (lambda +50)=0 tag 6$$ So, we have three cases : $a=0$ , $lambda=0$, $lambda=-50$.
The first case $a=0$ can be discarded since it would make $a=b=c=0$ which does not satisfy the constraint.
The second case $lambda=0$ would make $c=frac{5 }{3}a$ which, in turn, would make $frac{50 }{9}a^2=1$ from the constraint and then the value of the expression to maximize would just be $0$.
So, what is left is the case $lambda=-50$ which makes $c=-frac{5 }{3}a$ which gives again $frac{50 }{9}a^2=1$ from the constraint. The expression to maximize if then $frac{a^2 lambda ^2}{9}$ with $lambda=-50$ and $frac{50 }{9}a^2=1$ which then gives a maximum vzlue of $50$.
I let you finishing what could be required.
$endgroup$
Using the method of Lagrange multipliers, consider
$$F= (4a-3b)^2+(5b-4c)^2+(3c-5a)^2+lambda(a^2+b^2+c^2-1) tag 1$$ Computing the partial derivatives
$$frac{partial F}{partial a}=8 (4 a-3 b)-10 (3 c-5 a)+2 a lambda tag 2$$
$$frac{partial F}{partial b}=-6 (4 a-3 b)+10 (5 b-4 c)+2 b lambdatag 3$$
$$frac{partial F}{partial c}=6 (3 c-5 a)-8 (5 b-4 c)+2 c lambdatag 4$$
$$frac{partial F}{partial lambda}=a^2+b^2+c^2-1tag 5$$
From $(2)$, $b=frac{1}{12} (a lambda +41 a-15 c)$; plug in $(3)$ to get $c=frac{1}{15} (a lambda +25 a)$ which makes $b=frac{4 }{3}a$; plug $b$ and $c$ in $(4)$ to get
$$frac{2}{15} a lambda (lambda +50)=0 tag 6$$ So, we have three cases : $a=0$ , $lambda=0$, $lambda=-50$.
The first case $a=0$ can be discarded since it would make $a=b=c=0$ which does not satisfy the constraint.
The second case $lambda=0$ would make $c=frac{5 }{3}a$ which, in turn, would make $frac{50 }{9}a^2=1$ from the constraint and then the value of the expression to maximize would just be $0$.
So, what is left is the case $lambda=-50$ which makes $c=-frac{5 }{3}a$ which gives again $frac{50 }{9}a^2=1$ from the constraint. The expression to maximize if then $frac{a^2 lambda ^2}{9}$ with $lambda=-50$ and $frac{50 }{9}a^2=1$ which then gives a maximum vzlue of $50$.
I let you finishing what could be required.
answered Jan 27 at 4:13
Claude LeiboviciClaude Leibovici
124k1158135
124k1158135
add a comment |
add a comment |
$begingroup$
We need to find a minimal value of $k$ for which the following inequality is true for all reals $a$, $b$ and $c$.
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2leq k(a^2+b^2+c^2)$$ or
$$(k-41)a^2+(k-34)b^2+(k-25)c^2+24ab+40bc+30acgeq0$$ or
$$(k-41)a^2+6(4b+5c)a+(k-34)b^2+40bc+(k-25)c^2geq0,$$ for which we need
$$k>41$$ and
$$9(4b+5c)^2-(k-41)((k-34)b^2+40bc+(k-25)c^2)leq0$$ or
$$(k^2-75k+1250)b^2+(k^2-66k+800)c^2+40(k-50)bcgeq0$$ or
$$(k-50)((k-25)b^2+(k-16)c^2+40bc)geq0.$$
But $$(k-25)b^2+(k-16)c^2+40bcgeq16b^2+25c^2+40bc=(4b+5c)^2geq0,$$ which gives $$kgeq50.$$
For $k=50$ we obtain $$9a^2+6(4b+5c)a+(4b+5c)^2geq0$$ or
$$(3a+4b+5c)^2geq0,$$ which gives that the equality occurs for $$3a+4b+5c=0$$ and $$a^2+b^2+c^2=1,$$
which says that $50$ is a maximal value.
$endgroup$
add a comment |
$begingroup$
We need to find a minimal value of $k$ for which the following inequality is true for all reals $a$, $b$ and $c$.
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2leq k(a^2+b^2+c^2)$$ or
$$(k-41)a^2+(k-34)b^2+(k-25)c^2+24ab+40bc+30acgeq0$$ or
$$(k-41)a^2+6(4b+5c)a+(k-34)b^2+40bc+(k-25)c^2geq0,$$ for which we need
$$k>41$$ and
$$9(4b+5c)^2-(k-41)((k-34)b^2+40bc+(k-25)c^2)leq0$$ or
$$(k^2-75k+1250)b^2+(k^2-66k+800)c^2+40(k-50)bcgeq0$$ or
$$(k-50)((k-25)b^2+(k-16)c^2+40bc)geq0.$$
But $$(k-25)b^2+(k-16)c^2+40bcgeq16b^2+25c^2+40bc=(4b+5c)^2geq0,$$ which gives $$kgeq50.$$
For $k=50$ we obtain $$9a^2+6(4b+5c)a+(4b+5c)^2geq0$$ or
$$(3a+4b+5c)^2geq0,$$ which gives that the equality occurs for $$3a+4b+5c=0$$ and $$a^2+b^2+c^2=1,$$
which says that $50$ is a maximal value.
$endgroup$
add a comment |
$begingroup$
We need to find a minimal value of $k$ for which the following inequality is true for all reals $a$, $b$ and $c$.
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2leq k(a^2+b^2+c^2)$$ or
$$(k-41)a^2+(k-34)b^2+(k-25)c^2+24ab+40bc+30acgeq0$$ or
$$(k-41)a^2+6(4b+5c)a+(k-34)b^2+40bc+(k-25)c^2geq0,$$ for which we need
$$k>41$$ and
$$9(4b+5c)^2-(k-41)((k-34)b^2+40bc+(k-25)c^2)leq0$$ or
$$(k^2-75k+1250)b^2+(k^2-66k+800)c^2+40(k-50)bcgeq0$$ or
$$(k-50)((k-25)b^2+(k-16)c^2+40bc)geq0.$$
But $$(k-25)b^2+(k-16)c^2+40bcgeq16b^2+25c^2+40bc=(4b+5c)^2geq0,$$ which gives $$kgeq50.$$
For $k=50$ we obtain $$9a^2+6(4b+5c)a+(4b+5c)^2geq0$$ or
$$(3a+4b+5c)^2geq0,$$ which gives that the equality occurs for $$3a+4b+5c=0$$ and $$a^2+b^2+c^2=1,$$
which says that $50$ is a maximal value.
$endgroup$
We need to find a minimal value of $k$ for which the following inequality is true for all reals $a$, $b$ and $c$.
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2leq k(a^2+b^2+c^2)$$ or
$$(k-41)a^2+(k-34)b^2+(k-25)c^2+24ab+40bc+30acgeq0$$ or
$$(k-41)a^2+6(4b+5c)a+(k-34)b^2+40bc+(k-25)c^2geq0,$$ for which we need
$$k>41$$ and
$$9(4b+5c)^2-(k-41)((k-34)b^2+40bc+(k-25)c^2)leq0$$ or
$$(k^2-75k+1250)b^2+(k^2-66k+800)c^2+40(k-50)bcgeq0$$ or
$$(k-50)((k-25)b^2+(k-16)c^2+40bc)geq0.$$
But $$(k-25)b^2+(k-16)c^2+40bcgeq16b^2+25c^2+40bc=(4b+5c)^2geq0,$$ which gives $$kgeq50.$$
For $k=50$ we obtain $$9a^2+6(4b+5c)a+(4b+5c)^2geq0$$ or
$$(3a+4b+5c)^2geq0,$$ which gives that the equality occurs for $$3a+4b+5c=0$$ and $$a^2+b^2+c^2=1,$$
which says that $50$ is a maximal value.
answered Jan 27 at 6:37
Michael RozenbergMichael Rozenberg
109k1895200
109k1895200
add a comment |
add a comment |
$begingroup$
Use the technique of Lagrange multipliers to solve.
Essentially, if $$f(a,b,c) = a^2 + b^2 + c^2,$$ $$g(a,b,c) = (4a-3b)^2+(5b-4c)^2+(3c-5a)^2,$$ then find the values $(a,b,c)$ such that $vec nabla f$ is parallel to $vec nabla g$.
Then, by a bit of testing on your solutions, select the one that satisfies $f(a,b,c) = 1$ and is a maximum of $g(a,b,c)$ (as opposed to a minimum or saddle point, for instance).
$endgroup$
add a comment |
$begingroup$
Use the technique of Lagrange multipliers to solve.
Essentially, if $$f(a,b,c) = a^2 + b^2 + c^2,$$ $$g(a,b,c) = (4a-3b)^2+(5b-4c)^2+(3c-5a)^2,$$ then find the values $(a,b,c)$ such that $vec nabla f$ is parallel to $vec nabla g$.
Then, by a bit of testing on your solutions, select the one that satisfies $f(a,b,c) = 1$ and is a maximum of $g(a,b,c)$ (as opposed to a minimum or saddle point, for instance).
$endgroup$
add a comment |
$begingroup$
Use the technique of Lagrange multipliers to solve.
Essentially, if $$f(a,b,c) = a^2 + b^2 + c^2,$$ $$g(a,b,c) = (4a-3b)^2+(5b-4c)^2+(3c-5a)^2,$$ then find the values $(a,b,c)$ such that $vec nabla f$ is parallel to $vec nabla g$.
Then, by a bit of testing on your solutions, select the one that satisfies $f(a,b,c) = 1$ and is a maximum of $g(a,b,c)$ (as opposed to a minimum or saddle point, for instance).
$endgroup$
Use the technique of Lagrange multipliers to solve.
Essentially, if $$f(a,b,c) = a^2 + b^2 + c^2,$$ $$g(a,b,c) = (4a-3b)^2+(5b-4c)^2+(3c-5a)^2,$$ then find the values $(a,b,c)$ such that $vec nabla f$ is parallel to $vec nabla g$.
Then, by a bit of testing on your solutions, select the one that satisfies $f(a,b,c) = 1$ and is a maximum of $g(a,b,c)$ (as opposed to a minimum or saddle point, for instance).
answered Jan 27 at 3:01
Trevor KafkaTrevor Kafka
5309
5309
add a comment |
add a comment |
$begingroup$
Assume $vec{A}=ahat{i}+bhat{j}+chat{k}$ and $vec{B}=3hat{i}+4hat{j}+5hat{k}$
$$bigg|vec{A}times vec{B}bigg|^2=bigg|vec{A}bigg|^2bigg|vec{B}bigg|^2-bigg(vec{A}cdotvec{B}bigg)^2$$
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2=50-(3a+4b+5c)^2leq 50$$
$endgroup$
add a comment |
$begingroup$
Assume $vec{A}=ahat{i}+bhat{j}+chat{k}$ and $vec{B}=3hat{i}+4hat{j}+5hat{k}$
$$bigg|vec{A}times vec{B}bigg|^2=bigg|vec{A}bigg|^2bigg|vec{B}bigg|^2-bigg(vec{A}cdotvec{B}bigg)^2$$
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2=50-(3a+4b+5c)^2leq 50$$
$endgroup$
add a comment |
$begingroup$
Assume $vec{A}=ahat{i}+bhat{j}+chat{k}$ and $vec{B}=3hat{i}+4hat{j}+5hat{k}$
$$bigg|vec{A}times vec{B}bigg|^2=bigg|vec{A}bigg|^2bigg|vec{B}bigg|^2-bigg(vec{A}cdotvec{B}bigg)^2$$
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2=50-(3a+4b+5c)^2leq 50$$
$endgroup$
Assume $vec{A}=ahat{i}+bhat{j}+chat{k}$ and $vec{B}=3hat{i}+4hat{j}+5hat{k}$
$$bigg|vec{A}times vec{B}bigg|^2=bigg|vec{A}bigg|^2bigg|vec{B}bigg|^2-bigg(vec{A}cdotvec{B}bigg)^2$$
$$(4a-3b)^2+(5b-4c)^2+(3c-5a)^2=50-(3a+4b+5c)^2leq 50$$
answered Feb 4 at 7:10
jackyjacky
1,259816
1,259816
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089074%2fmaximizing-4a-3b25b-4c23c-5a2-such-that-a2b2c2-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Hint: the second quadratic form is clearly positive definite and associated to a symmetric matrix, whose real eigenvalues describe...
$endgroup$
– Jack D'Aurizio
Jan 27 at 2:49
$begingroup$
You’re looking for a norm of an obvious matrix...
$endgroup$
– Macavity
Jan 27 at 5:52