Minimize Trace for non-symmetric matrix
$begingroup$
Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
shall be optimized:
min $tr (AX)$ subject to $X>0$
This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?
convex-optimization
$endgroup$
add a comment |
$begingroup$
Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
shall be optimized:
min $tr (AX)$ subject to $X>0$
This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?
convex-optimization
$endgroup$
add a comment |
$begingroup$
Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
shall be optimized:
min $tr (AX)$ subject to $X>0$
This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?
convex-optimization
$endgroup$
Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
shall be optimized:
min $tr (AX)$ subject to $X>0$
This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?
convex-optimization
convex-optimization
asked Oct 2 '13 at 9:08
Lyapunov123Lyapunov123
313
313
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, the program is convex for any $A$.
Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,
begin{align*}
textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
&= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
&= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
end{align*}
We will use the following identity: For any square matrix $A$
$$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
Proof:
begin{align*}
frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
&= x^TAx
end{align*}
Thus, we get
begin{align*}
textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
&= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
end{align*}
The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f512021%2fminimize-trace-for-non-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, the program is convex for any $A$.
Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,
begin{align*}
textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
&= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
&= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
end{align*}
We will use the following identity: For any square matrix $A$
$$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
Proof:
begin{align*}
frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
&= x^TAx
end{align*}
Thus, we get
begin{align*}
textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
&= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
end{align*}
The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.
$endgroup$
add a comment |
$begingroup$
Yes, the program is convex for any $A$.
Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,
begin{align*}
textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
&= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
&= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
end{align*}
We will use the following identity: For any square matrix $A$
$$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
Proof:
begin{align*}
frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
&= x^TAx
end{align*}
Thus, we get
begin{align*}
textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
&= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
end{align*}
The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.
$endgroup$
add a comment |
$begingroup$
Yes, the program is convex for any $A$.
Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,
begin{align*}
textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
&= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
&= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
end{align*}
We will use the following identity: For any square matrix $A$
$$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
Proof:
begin{align*}
frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
&= x^TAx
end{align*}
Thus, we get
begin{align*}
textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
&= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
end{align*}
The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.
$endgroup$
Yes, the program is convex for any $A$.
Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,
begin{align*}
textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
&= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
&= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
&= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
end{align*}
We will use the following identity: For any square matrix $A$
$$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
Proof:
begin{align*}
frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
&= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
&= x^TAx
end{align*}
Thus, we get
begin{align*}
textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
&= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
& = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
end{align*}
The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.
answered Oct 2 '13 at 16:10
ThejaTheja
21317
21317
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f512021%2fminimize-trace-for-non-symmetric-matrix%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown