Minimize Trace for non-symmetric matrix












1












$begingroup$


Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
shall be optimized:



min $tr (AX)$ subject to $X>0$



This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
    shall be optimized:



    min $tr (AX)$ subject to $X>0$



    This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
      shall be optimized:



      min $tr (AX)$ subject to $X>0$



      This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?










      share|cite|improve this question









      $endgroup$




      Let $A$ be a given matrix and $X$ a symmetric positive definite matrix which
      shall be optimized:



      min $tr (AX)$ subject to $X>0$



      This optimization problem is convex if $A$ is symmetric as it is the standard form of Semidefinite Programming. But is the problem convex for non-symmetric $A$ as well?







      convex-optimization






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Oct 2 '13 at 9:08









      Lyapunov123Lyapunov123

      313




      313






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          Yes, the program is convex for any $A$.



          Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,



          begin{align*}
          textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
          &= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
          &= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
          &= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
          &= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
          end{align*}
          We will use the following identity: For any square matrix $A$
          $$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
          Proof:
          begin{align*}
          frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
          &= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
          &= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
          &= x^TAx
          end{align*}
          Thus, we get
          begin{align*}
          textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
          &= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
          & = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
          & = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
          end{align*}
          The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f512021%2fminimize-trace-for-non-symmetric-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Yes, the program is convex for any $A$.



            Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,



            begin{align*}
            textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
            &= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
            &= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
            &= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
            &= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
            end{align*}
            We will use the following identity: For any square matrix $A$
            $$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
            Proof:
            begin{align*}
            frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
            &= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
            &= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
            &= x^TAx
            end{align*}
            Thus, we get
            begin{align*}
            textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
            &= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
            & = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
            & = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
            end{align*}
            The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.






            share|cite|improve this answer









            $endgroup$


















              1












              $begingroup$

              Yes, the program is convex for any $A$.



              Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,



              begin{align*}
              textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
              &= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
              &= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
              &= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
              &= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
              end{align*}
              We will use the following identity: For any square matrix $A$
              $$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
              Proof:
              begin{align*}
              frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
              &= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
              &= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
              &= x^TAx
              end{align*}
              Thus, we get
              begin{align*}
              textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
              &= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
              & = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
              & = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
              end{align*}
              The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.






              share|cite|improve this answer









              $endgroup$
















                1












                1








                1





                $begingroup$

                Yes, the program is convex for any $A$.



                Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,



                begin{align*}
                textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
                &= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
                &= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
                &= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
                &= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
                end{align*}
                We will use the following identity: For any square matrix $A$
                $$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
                Proof:
                begin{align*}
                frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
                &= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
                &= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
                &= x^TAx
                end{align*}
                Thus, we get
                begin{align*}
                textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
                &= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
                & = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
                & = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
                end{align*}
                The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.






                share|cite|improve this answer









                $endgroup$



                Yes, the program is convex for any $A$.



                Let $X in S^n$ (the space of $ntimes n$ dimensional symmetric matrices). Then,



                begin{align*}
                textrm{trace}(AX) &= textrm{trace}left(Aleft(sum_{i=1}^nnu_i x_i x_i^Tright)right)\
                &= textrm{trace}left(sum_{i=1}^nnu_i A x_i x_i^Tright)\
                &= sum_{i=1}^nnu_i textrm{trace}left( A x_i x_i^Tright)\
                &= sum_{i=1}^nnu_i textrm{trace}left(x_i^T A x_i right)\
                &= sum_{i=1}^nnu_i left(x_i^T A x_i right)\
                end{align*}
                We will use the following identity: For any square matrix $A$
                $$ x^TAx = frac{1}{2}x^T(A+ A^T)x$$
                Proof:
                begin{align*}
                frac{1}{2}x^T(A+ A^T)x &= frac{1}{2}x^TAx + frac{1}{2}x^TA^Tx\
                &= frac{1}{2}x^T(Ax) + frac{1}{2}(Ax)^Tx\
                &= frac{1}{2}x^T(Ax) + frac{1}{2}x^T(Ax)\
                &= x^TAx
                end{align*}
                Thus, we get
                begin{align*}
                textrm{trace}(AX) &= sum_{i=1}^nnu_i left(x_i^T frac{1}{2}(A+ A^T)x_i right)\
                &= frac{1}{2}textrm{trace}left(sum_{i=1}^nnu_i x_i^T(A+ A^T)x_i right)\
                & = frac{1}{2}textrm{trace}left((A+ A^T)sum_{i=1}^nnu_i x_ix_i^T right)\
                & = frac{1}{2}textrm{trace}left((A+ A^T)Xright)
                end{align*}
                The term $textrm{trace}left((A+ A^T)Xright)$ is in standard form as desired.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Oct 2 '13 at 16:10









                ThejaTheja

                21317




                21317






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f512021%2fminimize-trace-for-non-symmetric-matrix%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                    Npm cannot find a required file even through it is in the searched directory