Application of Leibniz Criterion to $sum_{k=2}^{+infty}(k^2+1)sin(frac{1}{k^3-1})alpha^k$
$begingroup$
I have to discuss absolute and simple convergence of $sum_{k=2}^{+infty}(k^2+1)sin(frac{1}{k^3-1})alpha^k$,where $alphainmathbb{R}$.
If $alpha=-1$ I have $sum_{k=2}^{+infty}(-1)^kb_k$,where $b_k=(k^2+1)sin(frac{1}{k^3-1})$.By Leibniz Criterion,for convergence I must have:
i)$lim_{kto+infty}b_k=0$
ii)$b_k$ eventually decreasing for $kto+infty$
For the first condition $lim_{kto+infty}=(k^2+1)sin(frac{1}{k^3-1})simlim_{kto+infty}frac{1}{k}=0$
As for the second condition ${frac{1}{k}}'=-frac{1}{k^2}lt0$.Can I deduce from this that our original $b_k$ is also decreasing,or I have to study derivative of $b_k$ itself?
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I have to discuss absolute and simple convergence of $sum_{k=2}^{+infty}(k^2+1)sin(frac{1}{k^3-1})alpha^k$,where $alphainmathbb{R}$.
If $alpha=-1$ I have $sum_{k=2}^{+infty}(-1)^kb_k$,where $b_k=(k^2+1)sin(frac{1}{k^3-1})$.By Leibniz Criterion,for convergence I must have:
i)$lim_{kto+infty}b_k=0$
ii)$b_k$ eventually decreasing for $kto+infty$
For the first condition $lim_{kto+infty}=(k^2+1)sin(frac{1}{k^3-1})simlim_{kto+infty}frac{1}{k}=0$
As for the second condition ${frac{1}{k}}'=-frac{1}{k^2}lt0$.Can I deduce from this that our original $b_k$ is also decreasing,or I have to study derivative of $b_k$ itself?
real-analysis calculus sequences-and-series convergence
$endgroup$
add a comment |
$begingroup$
I have to discuss absolute and simple convergence of $sum_{k=2}^{+infty}(k^2+1)sin(frac{1}{k^3-1})alpha^k$,where $alphainmathbb{R}$.
If $alpha=-1$ I have $sum_{k=2}^{+infty}(-1)^kb_k$,where $b_k=(k^2+1)sin(frac{1}{k^3-1})$.By Leibniz Criterion,for convergence I must have:
i)$lim_{kto+infty}b_k=0$
ii)$b_k$ eventually decreasing for $kto+infty$
For the first condition $lim_{kto+infty}=(k^2+1)sin(frac{1}{k^3-1})simlim_{kto+infty}frac{1}{k}=0$
As for the second condition ${frac{1}{k}}'=-frac{1}{k^2}lt0$.Can I deduce from this that our original $b_k$ is also decreasing,or I have to study derivative of $b_k$ itself?
real-analysis calculus sequences-and-series convergence
$endgroup$
I have to discuss absolute and simple convergence of $sum_{k=2}^{+infty}(k^2+1)sin(frac{1}{k^3-1})alpha^k$,where $alphainmathbb{R}$.
If $alpha=-1$ I have $sum_{k=2}^{+infty}(-1)^kb_k$,where $b_k=(k^2+1)sin(frac{1}{k^3-1})$.By Leibniz Criterion,for convergence I must have:
i)$lim_{kto+infty}b_k=0$
ii)$b_k$ eventually decreasing for $kto+infty$
For the first condition $lim_{kto+infty}=(k^2+1)sin(frac{1}{k^3-1})simlim_{kto+infty}frac{1}{k}=0$
As for the second condition ${frac{1}{k}}'=-frac{1}{k^2}lt0$.Can I deduce from this that our original $b_k$ is also decreasing,or I have to study derivative of $b_k$ itself?
real-analysis calculus sequences-and-series convergence
real-analysis calculus sequences-and-series convergence
edited Jan 29 at 1:18
Turan Nasibli
asked Jan 29 at 0:23


Turan NasibliTuran Nasibli
846
846
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
By applying ratio test, we know that the series is absolutely convergent for $|alpha|<1$ and divergent for $|alpha|>1$. For $alpha=1 $ the series is divergent since $$(k^2+1)sin(frac{1}{k^3-1})sim {k^2+1over k^3-1}sim {1over k}$$similarly for $alpha=-1$$$(k^2+1)sin(frac{1}{k^3-1})(-1)^ksim {(-1)^kover k}$$which is convergent but not absolutely.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091588%2fapplication-of-leibniz-criterion-to-sum-k-2-inftyk21-sin-frac1k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
By applying ratio test, we know that the series is absolutely convergent for $|alpha|<1$ and divergent for $|alpha|>1$. For $alpha=1 $ the series is divergent since $$(k^2+1)sin(frac{1}{k^3-1})sim {k^2+1over k^3-1}sim {1over k}$$similarly for $alpha=-1$$$(k^2+1)sin(frac{1}{k^3-1})(-1)^ksim {(-1)^kover k}$$which is convergent but not absolutely.
$endgroup$
add a comment |
$begingroup$
By applying ratio test, we know that the series is absolutely convergent for $|alpha|<1$ and divergent for $|alpha|>1$. For $alpha=1 $ the series is divergent since $$(k^2+1)sin(frac{1}{k^3-1})sim {k^2+1over k^3-1}sim {1over k}$$similarly for $alpha=-1$$$(k^2+1)sin(frac{1}{k^3-1})(-1)^ksim {(-1)^kover k}$$which is convergent but not absolutely.
$endgroup$
add a comment |
$begingroup$
By applying ratio test, we know that the series is absolutely convergent for $|alpha|<1$ and divergent for $|alpha|>1$. For $alpha=1 $ the series is divergent since $$(k^2+1)sin(frac{1}{k^3-1})sim {k^2+1over k^3-1}sim {1over k}$$similarly for $alpha=-1$$$(k^2+1)sin(frac{1}{k^3-1})(-1)^ksim {(-1)^kover k}$$which is convergent but not absolutely.
$endgroup$
By applying ratio test, we know that the series is absolutely convergent for $|alpha|<1$ and divergent for $|alpha|>1$. For $alpha=1 $ the series is divergent since $$(k^2+1)sin(frac{1}{k^3-1})sim {k^2+1over k^3-1}sim {1over k}$$similarly for $alpha=-1$$$(k^2+1)sin(frac{1}{k^3-1})(-1)^ksim {(-1)^kover k}$$which is convergent but not absolutely.
answered Feb 2 at 16:00


Mostafa AyazMostafa Ayaz
18.2k31040
18.2k31040
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091588%2fapplication-of-leibniz-criterion-to-sum-k-2-inftyk21-sin-frac1k%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown