Radius of convergence of $sum_{n geq 0}a_n z^{n!}$ given that of $sum_{n geq 0}a_n z^{n}$












1












$begingroup$


What would be the radius of convergence of $sum_{n geq 0}a_n z^{n!}$ given that the radius of convergence of $sum_{n geq 0}a_n z^{n}$ is $L$.










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    What would be the radius of convergence of $sum_{n geq 0}a_n z^{n!}$ given that the radius of convergence of $sum_{n geq 0}a_n z^{n}$ is $L$.










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      What would be the radius of convergence of $sum_{n geq 0}a_n z^{n!}$ given that the radius of convergence of $sum_{n geq 0}a_n z^{n}$ is $L$.










      share|cite|improve this question











      $endgroup$




      What would be the radius of convergence of $sum_{n geq 0}a_n z^{n!}$ given that the radius of convergence of $sum_{n geq 0}a_n z^{n}$ is $L$.







      real-analysis sequences-and-series complex-analysis power-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 4:55

























      asked Jan 29 at 4:42







      user397197





























          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Hint: let $b_n=a_k$ if $n=k!$ and $0$ if $n$ is not a factorial. We have to find the radius of convergence of $sum b_nz^{n}$. Use root test. Can you see that the radius of convergence is $1$ provided $0<L<infty$?.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 6:14










          • $begingroup$
            @IvanNeretin You are right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 6:17












          • $begingroup$
            @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
            $endgroup$
            – user397197
            Jan 29 at 6:41










          • $begingroup$
            @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 7:27






          • 1




            $begingroup$
            Try $dfrac1{2^{n!}}$.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 15:23





















          0












          $begingroup$

          Using the Cauchy-Hadamard theorem:



          $r=frac1{limsup_{ntoinfty}sqrt[n!]{a_n}}=frac1{limsup_{ntoinfty}sqrt[(n-1)!]L}=1$, for $Lneq0,infty$.






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091751%2fradius-of-convergence-of-sum-n-geq-0a-n-zn-given-that-of-sum-n-geq%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown
























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Hint: let $b_n=a_k$ if $n=k!$ and $0$ if $n$ is not a factorial. We have to find the radius of convergence of $sum b_nz^{n}$. Use root test. Can you see that the radius of convergence is $1$ provided $0<L<infty$?.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 6:14










            • $begingroup$
              @IvanNeretin You are right.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 6:17












            • $begingroup$
              @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
              $endgroup$
              – user397197
              Jan 29 at 6:41










            • $begingroup$
              @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 7:27






            • 1




              $begingroup$
              Try $dfrac1{2^{n!}}$.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 15:23


















            1












            $begingroup$

            Hint: let $b_n=a_k$ if $n=k!$ and $0$ if $n$ is not a factorial. We have to find the radius of convergence of $sum b_nz^{n}$. Use root test. Can you see that the radius of convergence is $1$ provided $0<L<infty$?.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 6:14










            • $begingroup$
              @IvanNeretin You are right.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 6:17












            • $begingroup$
              @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
              $endgroup$
              – user397197
              Jan 29 at 6:41










            • $begingroup$
              @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 7:27






            • 1




              $begingroup$
              Try $dfrac1{2^{n!}}$.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 15:23
















            1












            1








            1





            $begingroup$

            Hint: let $b_n=a_k$ if $n=k!$ and $0$ if $n$ is not a factorial. We have to find the radius of convergence of $sum b_nz^{n}$. Use root test. Can you see that the radius of convergence is $1$ provided $0<L<infty$?.






            share|cite|improve this answer











            $endgroup$



            Hint: let $b_n=a_k$ if $n=k!$ and $0$ if $n$ is not a factorial. We have to find the radius of convergence of $sum b_nz^{n}$. Use root test. Can you see that the radius of convergence is $1$ provided $0<L<infty$?.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 29 at 6:16

























            answered Jan 29 at 5:59









            Kavi Rama MurthyKavi Rama Murthy

            71.2k53170




            71.2k53170












            • $begingroup$
              Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 6:14










            • $begingroup$
              @IvanNeretin You are right.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 6:17












            • $begingroup$
              @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
              $endgroup$
              – user397197
              Jan 29 at 6:41










            • $begingroup$
              @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 7:27






            • 1




              $begingroup$
              Try $dfrac1{2^{n!}}$.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 15:23




















            • $begingroup$
              Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 6:14










            • $begingroup$
              @IvanNeretin You are right.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 6:17












            • $begingroup$
              @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
              $endgroup$
              – user397197
              Jan 29 at 6:41










            • $begingroup$
              @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
              $endgroup$
              – Kavi Rama Murthy
              Jan 29 at 7:27






            • 1




              $begingroup$
              Try $dfrac1{2^{n!}}$.
              $endgroup$
              – Ivan Neretin
              Jan 29 at 15:23


















            $begingroup$
            Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 6:14




            $begingroup$
            Well, not quite irrespective. Certain possibilities open if $L=0$ or $L=infty$. Short of that, you are right.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 6:14












            $begingroup$
            @IvanNeretin You are right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 6:17






            $begingroup$
            @IvanNeretin You are right.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 6:17














            $begingroup$
            @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
            $endgroup$
            – user397197
            Jan 29 at 6:41




            $begingroup$
            @KaviRamaMurthy what of the cases where $L=0$ or $L=infty$
            $endgroup$
            – user397197
            Jan 29 at 6:41












            $begingroup$
            @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 7:27




            $begingroup$
            @stackuser Noting can be said about the cases $L=0$ and $L=infty$. The radius of convergence of $sum a_n z^{n!}$ can be anything.
            $endgroup$
            – Kavi Rama Murthy
            Jan 29 at 7:27




            1




            1




            $begingroup$
            Try $dfrac1{2^{n!}}$.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 15:23






            $begingroup$
            Try $dfrac1{2^{n!}}$.
            $endgroup$
            – Ivan Neretin
            Jan 29 at 15:23













            0












            $begingroup$

            Using the Cauchy-Hadamard theorem:



            $r=frac1{limsup_{ntoinfty}sqrt[n!]{a_n}}=frac1{limsup_{ntoinfty}sqrt[(n-1)!]L}=1$, for $Lneq0,infty$.






            share|cite|improve this answer











            $endgroup$


















              0












              $begingroup$

              Using the Cauchy-Hadamard theorem:



              $r=frac1{limsup_{ntoinfty}sqrt[n!]{a_n}}=frac1{limsup_{ntoinfty}sqrt[(n-1)!]L}=1$, for $Lneq0,infty$.






              share|cite|improve this answer











              $endgroup$
















                0












                0








                0





                $begingroup$

                Using the Cauchy-Hadamard theorem:



                $r=frac1{limsup_{ntoinfty}sqrt[n!]{a_n}}=frac1{limsup_{ntoinfty}sqrt[(n-1)!]L}=1$, for $Lneq0,infty$.






                share|cite|improve this answer











                $endgroup$



                Using the Cauchy-Hadamard theorem:



                $r=frac1{limsup_{ntoinfty}sqrt[n!]{a_n}}=frac1{limsup_{ntoinfty}sqrt[(n-1)!]L}=1$, for $Lneq0,infty$.







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 29 at 6:42

























                answered Jan 29 at 6:26









                Chris CusterChris Custer

                14.2k3827




                14.2k3827






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091751%2fradius-of-convergence-of-sum-n-geq-0a-n-zn-given-that-of-sum-n-geq%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                    SQL update select statement

                    WPF add header to Image with URL pettitions [duplicate]