Proving $b^a(1-b)^{1-a} leq a^a(1-a)^{1-a}$ where $0 leq b leq a leq 1$
$begingroup$
I am trying to prove an inequality which boils down to the following:
$$b^a(1-b)^{1-a} leq a^a(1-a)^{1-a}$$ where $0 leq b leq a leq 1$
Another equivalent formulation is:
$$ alog{b} + (1-a)log{(1-b)} leq alog a + (1-a)log (1-a)$$
How can I prove it?
inequality logarithms exponentiation
$endgroup$
add a comment |
$begingroup$
I am trying to prove an inequality which boils down to the following:
$$b^a(1-b)^{1-a} leq a^a(1-a)^{1-a}$$ where $0 leq b leq a leq 1$
Another equivalent formulation is:
$$ alog{b} + (1-a)log{(1-b)} leq alog a + (1-a)log (1-a)$$
How can I prove it?
inequality logarithms exponentiation
$endgroup$
add a comment |
$begingroup$
I am trying to prove an inequality which boils down to the following:
$$b^a(1-b)^{1-a} leq a^a(1-a)^{1-a}$$ where $0 leq b leq a leq 1$
Another equivalent formulation is:
$$ alog{b} + (1-a)log{(1-b)} leq alog a + (1-a)log (1-a)$$
How can I prove it?
inequality logarithms exponentiation
$endgroup$
I am trying to prove an inequality which boils down to the following:
$$b^a(1-b)^{1-a} leq a^a(1-a)^{1-a}$$ where $0 leq b leq a leq 1$
Another equivalent formulation is:
$$ alog{b} + (1-a)log{(1-b)} leq alog a + (1-a)log (1-a)$$
How can I prove it?
inequality logarithms exponentiation
inequality logarithms exponentiation
asked Jan 29 at 4:51
hi15hi15
1586
1586
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
For $xin (0,1)$, define $$f_a(x)=alog(x)+(1-a)log(1-x)$$
Then $$f_a^prime(x)=frac a x -frac {1-a}{1-x}=frac {a-x} {x(1-x)}$$
So $f_a$ is maximum at $x=a$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091764%2fproving-ba1-b1-a-leq-aa1-a1-a-where-0-leq-b-leq-a-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
For $xin (0,1)$, define $$f_a(x)=alog(x)+(1-a)log(1-x)$$
Then $$f_a^prime(x)=frac a x -frac {1-a}{1-x}=frac {a-x} {x(1-x)}$$
So $f_a$ is maximum at $x=a$.
$endgroup$
add a comment |
$begingroup$
For $xin (0,1)$, define $$f_a(x)=alog(x)+(1-a)log(1-x)$$
Then $$f_a^prime(x)=frac a x -frac {1-a}{1-x}=frac {a-x} {x(1-x)}$$
So $f_a$ is maximum at $x=a$.
$endgroup$
add a comment |
$begingroup$
For $xin (0,1)$, define $$f_a(x)=alog(x)+(1-a)log(1-x)$$
Then $$f_a^prime(x)=frac a x -frac {1-a}{1-x}=frac {a-x} {x(1-x)}$$
So $f_a$ is maximum at $x=a$.
$endgroup$
For $xin (0,1)$, define $$f_a(x)=alog(x)+(1-a)log(1-x)$$
Then $$f_a^prime(x)=frac a x -frac {1-a}{1-x}=frac {a-x} {x(1-x)}$$
So $f_a$ is maximum at $x=a$.
answered Jan 29 at 5:00
Stefan LafonStefan Lafon
3,005212
3,005212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091764%2fproving-ba1-b1-a-leq-aa1-a1-a-where-0-leq-b-leq-a-leq-1%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown