Estimate about $sum_{nleq x}mu(n)log frac xn$
$begingroup$
I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.
asymptotics analytic-number-theory
$endgroup$
add a comment |
$begingroup$
I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.
asymptotics analytic-number-theory
$endgroup$
1
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
2
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24
add a comment |
$begingroup$
I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.
asymptotics analytic-number-theory
$endgroup$
I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.
asymptotics analytic-number-theory
asymptotics analytic-number-theory
edited Jan 29 at 20:07
Martin Sleziak
44.9k10122277
44.9k10122277
asked Jan 29 at 4:04
kelvin hong 方kelvin hong 方
83719
83719
1
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
2
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24
add a comment |
1
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
2
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24
1
1
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
2
2
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091726%2festimate-about-sum-n-leq-x-mun-log-frac-xn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091726%2festimate-about-sum-n-leq-x-mun-log-frac-xn%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24
$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27
2
$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24