Estimate about $sum_{nleq x}mu(n)log frac xn$












1












$begingroup$


I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is $mu(n)$?
    $endgroup$
    – Stefan Lafon
    Jan 29 at 4:24










  • $begingroup$
    @StefanLafon It is the Möbius Function.
    $endgroup$
    – kelvin hong 方
    Jan 29 at 4:27






  • 2




    $begingroup$
    $int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
    $endgroup$
    – reuns
    Jan 29 at 5:24


















1












$begingroup$


I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    What is $mu(n)$?
    $endgroup$
    – Stefan Lafon
    Jan 29 at 4:24










  • $begingroup$
    @StefanLafon It is the Möbius Function.
    $endgroup$
    – kelvin hong 方
    Jan 29 at 4:27






  • 2




    $begingroup$
    $int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
    $endgroup$
    – reuns
    Jan 29 at 5:24
















1












1








1





$begingroup$


I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.










share|cite|improve this question











$endgroup$




I'm finding the estimate of $$sum_{nleq x}mu(n)log frac xn$$
There is a formula saying that $$sum_{nleq x}f(n)Gbigg(frac xnbigg)=sum_{nleq x}g(n)Fbigg(frac xnbigg)$$
where $F(x)=sum_{nleq x}f(n)$ and $G(x)=sum_{nleq x}g(n)$. So I want to express $log x$ in the form $$log x=sum_{nleq x}g(n)$$
for some function $g$. but what I really know is $$log n=sum_{d|n}mu(d)logdfrac nd$$
not the same as what I want. Any suggestion? I also appreciate different way to do this.







asymptotics analytic-number-theory






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 20:07









Martin Sleziak

44.9k10122277




44.9k10122277










asked Jan 29 at 4:04









kelvin hong 方kelvin hong 方

83719




83719








  • 1




    $begingroup$
    What is $mu(n)$?
    $endgroup$
    – Stefan Lafon
    Jan 29 at 4:24










  • $begingroup$
    @StefanLafon It is the Möbius Function.
    $endgroup$
    – kelvin hong 方
    Jan 29 at 4:27






  • 2




    $begingroup$
    $int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
    $endgroup$
    – reuns
    Jan 29 at 5:24
















  • 1




    $begingroup$
    What is $mu(n)$?
    $endgroup$
    – Stefan Lafon
    Jan 29 at 4:24










  • $begingroup$
    @StefanLafon It is the Möbius Function.
    $endgroup$
    – kelvin hong 方
    Jan 29 at 4:27






  • 2




    $begingroup$
    $int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
    $endgroup$
    – reuns
    Jan 29 at 5:24










1




1




$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24




$begingroup$
What is $mu(n)$?
$endgroup$
– Stefan Lafon
Jan 29 at 4:24












$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27




$begingroup$
@StefanLafon It is the Möbius Function.
$endgroup$
– kelvin hong 方
Jan 29 at 4:27




2




2




$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24






$begingroup$
$int_1^infty (sum_{n le x} mu(n)(log x -log n)) x^{-s-1}dx = frac{1}{s^2zeta(s)}$ so assuming the zeros are simple and after a lot of estimates to show it converges, there is the explicit formula $sum_{n le x} mu(n)(log x -log n) = sum Res(frac{1}{s^2zeta(s)} x^s) = sum_rho frac{x^rho}{rho^2 zeta'(rho)}-frac{zeta'(0)}{zeta(0)^2}+frac{log x}{zeta(0)} +sum_{k=1}^infty frac{x^{-2k}}{(-2k)^2 zeta'(-2k)}$. The RH is true iff it is $O(x^{1/2+epsilon})$.
$endgroup$
– reuns
Jan 29 at 5:24












0






active

oldest

votes












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091726%2festimate-about-sum-n-leq-x-mun-log-frac-xn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























0






active

oldest

votes








0






active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091726%2festimate-about-sum-n-leq-x-mun-log-frac-xn%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

SQL update select statement

WPF add header to Image with URL pettitions [duplicate]