Finding coefficient of $x^{100}$












0












$begingroup$


What will be solution of this function for coefficient of $x^{100}$?



$$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$



My solution:



$[x^{100}]   $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$



$[x^{100}]   $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



$begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
&=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $



$ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$



So coefficient of $x^{100}$ is $0$



There are many terms so to differentiate among them distinct colors are used



$color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



$color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$



$color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$



$color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$





But answer is $10$,
is anything wrong with my solution?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    What will be solution of this function for coefficient of $x^{100}$?



    $$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$



    My solution:



    $[x^{100}]   $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$



    $[x^{100}]   $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



    $begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
    &=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $



    $ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$



    So coefficient of $x^{100}$ is $0$



    There are many terms so to differentiate among them distinct colors are used



    $color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



    $color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$



    $color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$



    $color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$





    But answer is $10$,
    is anything wrong with my solution?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      What will be solution of this function for coefficient of $x^{100}$?



      $$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$



      My solution:



      $[x^{100}]   $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$



      $[x^{100}]   $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



      $begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
      &=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $



      $ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$



      So coefficient of $x^{100}$ is $0$



      There are many terms so to differentiate among them distinct colors are used



      $color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



      $color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$



      $color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$



      $color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$





      But answer is $10$,
      is anything wrong with my solution?










      share|cite|improve this question











      $endgroup$




      What will be solution of this function for coefficient of $x^{100}$?



      $$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$



      My solution:



      $[x^{100}]   $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$



      $[x^{100}]   $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



      $begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
      &=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $



      $ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$



      So coefficient of $x^{100}$ is $0$



      There are many terms so to differentiate among them distinct colors are used



      $color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$



      $color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$



      $color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$



      $color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$





      But answer is $10$,
      is anything wrong with my solution?







      combinatorics proof-verification generating-functions






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 5:05









      Yadati Kiran

      2,1121622




      2,1121622










      asked Jan 29 at 4:37









      Mk UtkarshMk Utkarsh

      94110




      94110






















          3 Answers
          3






          active

          oldest

          votes


















          2












          $begingroup$

          The problem is equivalent to that of how many ways of making one pound out of
          ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.



          I'll try to explain in monochrome. For any $t$,
          $$frac1{1-t}=sum_{n=0}^infty t^n$$
          at least if $t$ is near zero. Then
          begin{align}
          frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
          &=(1+x^{10}+x^{20}+x^{30}+cdots)\
          &times
          (1+x^{20}+x^{40}+x^{60}+cdots)\
          &times
          (1+x^{50}+x^{100}+x^{150}+cdots)
          end{align}

          and we see the coefficients of all powers of $x^{10}$ in this expansion
          are all positive. More formally,
          begin{align}
          frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
          &=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
          &=sum_{a,b,c=0}^infty x^{10a+20b+50c}
          end{align}

          so the coefficient of $x^{100}$ is the number of solutions
          to $10a+20b+50c=100$ in non-negative integers.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
            $endgroup$
            – Mk Utkarsh
            Jan 29 at 5:46





















          1












          $begingroup$

          Hint:



          Set $y=x^{10},$



          Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$



          we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$



          $$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$



          So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$



          $+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )



          $+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )






          share|cite|improve this answer









          $endgroup$





















            0












            $begingroup$

            Your mistake is in calculating $binom{-1}k$. You had
            $$
            (-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
            $$

            The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
            $$
            (-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
            $$

            The answer is then
            $1+1+1+1+1+1+1+1+1+1=10$.






            share|cite|improve this answer











            $endgroup$














              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091747%2ffinding-coefficient-of-x100%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              2












              $begingroup$

              The problem is equivalent to that of how many ways of making one pound out of
              ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.



              I'll try to explain in monochrome. For any $t$,
              $$frac1{1-t}=sum_{n=0}^infty t^n$$
              at least if $t$ is near zero. Then
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=(1+x^{10}+x^{20}+x^{30}+cdots)\
              &times
              (1+x^{20}+x^{40}+x^{60}+cdots)\
              &times
              (1+x^{50}+x^{100}+x^{150}+cdots)
              end{align}

              and we see the coefficients of all powers of $x^{10}$ in this expansion
              are all positive. More formally,
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
              &=sum_{a,b,c=0}^infty x^{10a+20b+50c}
              end{align}

              so the coefficient of $x^{100}$ is the number of solutions
              to $10a+20b+50c=100$ in non-negative integers.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
                $endgroup$
                – Mk Utkarsh
                Jan 29 at 5:46


















              2












              $begingroup$

              The problem is equivalent to that of how many ways of making one pound out of
              ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.



              I'll try to explain in monochrome. For any $t$,
              $$frac1{1-t}=sum_{n=0}^infty t^n$$
              at least if $t$ is near zero. Then
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=(1+x^{10}+x^{20}+x^{30}+cdots)\
              &times
              (1+x^{20}+x^{40}+x^{60}+cdots)\
              &times
              (1+x^{50}+x^{100}+x^{150}+cdots)
              end{align}

              and we see the coefficients of all powers of $x^{10}$ in this expansion
              are all positive. More formally,
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
              &=sum_{a,b,c=0}^infty x^{10a+20b+50c}
              end{align}

              so the coefficient of $x^{100}$ is the number of solutions
              to $10a+20b+50c=100$ in non-negative integers.






              share|cite|improve this answer











              $endgroup$













              • $begingroup$
                I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
                $endgroup$
                – Mk Utkarsh
                Jan 29 at 5:46
















              2












              2








              2





              $begingroup$

              The problem is equivalent to that of how many ways of making one pound out of
              ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.



              I'll try to explain in monochrome. For any $t$,
              $$frac1{1-t}=sum_{n=0}^infty t^n$$
              at least if $t$ is near zero. Then
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=(1+x^{10}+x^{20}+x^{30}+cdots)\
              &times
              (1+x^{20}+x^{40}+x^{60}+cdots)\
              &times
              (1+x^{50}+x^{100}+x^{150}+cdots)
              end{align}

              and we see the coefficients of all powers of $x^{10}$ in this expansion
              are all positive. More formally,
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
              &=sum_{a,b,c=0}^infty x^{10a+20b+50c}
              end{align}

              so the coefficient of $x^{100}$ is the number of solutions
              to $10a+20b+50c=100$ in non-negative integers.






              share|cite|improve this answer











              $endgroup$



              The problem is equivalent to that of how many ways of making one pound out of
              ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.



              I'll try to explain in monochrome. For any $t$,
              $$frac1{1-t}=sum_{n=0}^infty t^n$$
              at least if $t$ is near zero. Then
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=(1+x^{10}+x^{20}+x^{30}+cdots)\
              &times
              (1+x^{20}+x^{40}+x^{60}+cdots)\
              &times
              (1+x^{50}+x^{100}+x^{150}+cdots)
              end{align}

              and we see the coefficients of all powers of $x^{10}$ in this expansion
              are all positive. More formally,
              begin{align}
              frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
              &=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
              &=sum_{a,b,c=0}^infty x^{10a+20b+50c}
              end{align}

              so the coefficient of $x^{100}$ is the number of solutions
              to $10a+20b+50c=100$ in non-negative integers.







              share|cite|improve this answer














              share|cite|improve this answer



              share|cite|improve this answer








              edited Jan 29 at 5:43









              Mk Utkarsh

              94110




              94110










              answered Jan 29 at 4:51









              Lord Shark the UnknownLord Shark the Unknown

              107k1162135




              107k1162135












              • $begingroup$
                I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
                $endgroup$
                – Mk Utkarsh
                Jan 29 at 5:46




















              • $begingroup$
                I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
                $endgroup$
                – Mk Utkarsh
                Jan 29 at 5:46


















              $begingroup$
              I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
              $endgroup$
              – Mk Utkarsh
              Jan 29 at 5:46






              $begingroup$
              I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
              $endgroup$
              – Mk Utkarsh
              Jan 29 at 5:46













              1












              $begingroup$

              Hint:



              Set $y=x^{10},$



              Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$



              we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$



              $$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$



              So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$



              $+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )



              $+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )






              share|cite|improve this answer









              $endgroup$


















                1












                $begingroup$

                Hint:



                Set $y=x^{10},$



                Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$



                we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$



                $$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$



                So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$



                $+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )



                $+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )






                share|cite|improve this answer









                $endgroup$
















                  1












                  1








                  1





                  $begingroup$

                  Hint:



                  Set $y=x^{10},$



                  Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$



                  we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$



                  $$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$



                  So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$



                  $+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )



                  $+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )






                  share|cite|improve this answer









                  $endgroup$



                  Hint:



                  Set $y=x^{10},$



                  Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$



                  we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$



                  $$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$



                  So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$



                  $+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )



                  $+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 29 at 4:46









                  lab bhattacharjeelab bhattacharjee

                  228k15158279




                  228k15158279























                      0












                      $begingroup$

                      Your mistake is in calculating $binom{-1}k$. You had
                      $$
                      (-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
                      $$

                      The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
                      $$
                      (-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
                      $$

                      The answer is then
                      $1+1+1+1+1+1+1+1+1+1=10$.






                      share|cite|improve this answer











                      $endgroup$


















                        0












                        $begingroup$

                        Your mistake is in calculating $binom{-1}k$. You had
                        $$
                        (-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
                        $$

                        The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
                        $$
                        (-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
                        $$

                        The answer is then
                        $1+1+1+1+1+1+1+1+1+1=10$.






                        share|cite|improve this answer











                        $endgroup$
















                          0












                          0








                          0





                          $begingroup$

                          Your mistake is in calculating $binom{-1}k$. You had
                          $$
                          (-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
                          $$

                          The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
                          $$
                          (-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
                          $$

                          The answer is then
                          $1+1+1+1+1+1+1+1+1+1=10$.






                          share|cite|improve this answer











                          $endgroup$



                          Your mistake is in calculating $binom{-1}k$. You had
                          $$
                          (-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
                          $$

                          The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
                          $$
                          (-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
                          $$

                          The answer is then
                          $1+1+1+1+1+1+1+1+1+1=10$.







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jan 29 at 18:56

























                          answered Jan 29 at 17:56









                          Mike EarnestMike Earnest

                          26.3k22151




                          26.3k22151






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Mathematics Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091747%2ffinding-coefficient-of-x100%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              'app-layout' is not a known element: how to share Component with different Modules

                              android studio warns about leanback feature tag usage required on manifest while using Unity exported app?

                              WPF add header to Image with URL pettitions [duplicate]