Finding coefficient of $x^{100}$
$begingroup$
What will be solution of this function for coefficient of $x^{100}$?
$$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$
My solution:
$[x^{100}] $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$
$[x^{100}] $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
&=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $
$ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$
So coefficient of $x^{100}$ is $0$
There are many terms so to differentiate among them distinct colors are used
$color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$
$color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$
$color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
But answer is $10$,
is anything wrong with my solution?
combinatorics proof-verification generating-functions
$endgroup$
add a comment |
$begingroup$
What will be solution of this function for coefficient of $x^{100}$?
$$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$
My solution:
$[x^{100}] $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$
$[x^{100}] $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
&=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $
$ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$
So coefficient of $x^{100}$ is $0$
There are many terms so to differentiate among them distinct colors are used
$color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$
$color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$
$color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
But answer is $10$,
is anything wrong with my solution?
combinatorics proof-verification generating-functions
$endgroup$
add a comment |
$begingroup$
What will be solution of this function for coefficient of $x^{100}$?
$$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$
My solution:
$[x^{100}] $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$
$[x^{100}] $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
&=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $
$ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$
So coefficient of $x^{100}$ is $0$
There are many terms so to differentiate among them distinct colors are used
$color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$
$color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$
$color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
But answer is $10$,
is anything wrong with my solution?
combinatorics proof-verification generating-functions
$endgroup$
What will be solution of this function for coefficient of $x^{100}$?
$$displaystylefrac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$$
My solution:
$[x^{100}] $$displaystyle frac{1}{left ( 1-x^{10} right )(1-x^{20})(1-x^{50})}$
$[x^{100}] $ $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$begin{aligned}displaystyle &binom{-n}{k} = (-1)^rbinom{n + k - 1}{k}\
&=displaystyle color{red} {(-1)^{10}binom{-1}{10}binom{-1}{0}binom{-1}{0} + (-1)^5 binom{-1}{0}binom{-1}{5}binom{-1}{0} + (-1)^2binom{-1}{0}binom{-1}{0}binom{-1}{2}} \ & + color{blue}{ (-1)^8 (-1)^1 binom{-1}{8}binom{-1}{1}binom{-1}{0} + (-1)^6 (-1)^2binom{-1}{6}binom{-1}{2}binom{-1}{0} + (-1)^4 (-1)^3 binom{-1}{4}binom{-1}{3}binom{-1}{0} + (-1)^2 (-1)^4binom{-1}{2}binom{-1}{4}binom{-1}{0} }\ & + color{Orange}{ (-1)^5 (-1)^1 binom{-1}{5}binom{-1}{0}binom{-1}{1} } \ & + color{maroon}{(-1)^3(-1)^1(-1)^1binom{-1}{3}binom{-1}{1}binom{-1}{1} + (-1)^1 (-1)^2(-1)^3binom{-1}{1}binom{-1}{2}binom{-1}{1} }end{aligned} $
$ 1 – 1 + 1 + 1 – 1 + 1 – 1 – 1 + 1 – 1 = 0$
So coefficient of $x^{100}$ is $0$
There are many terms so to differentiate among them distinct colors are used
$color{red}{text{Red}}$ - Selecting $x$ from any one of $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
$color{Blue}{text{Blue}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$
$color{Orange}{text{Orange}}$ - Selecting from both $(1-x^{10})^{-1}$$(1-x^{50})^{-1}$
$color{maroon}{text{Maroon}}$ - Selecting from all $(1-x^{10})^{-1}$$(1-x^{20})^{-1}$$(1-x^{50})^{-1}$
But answer is $10$,
is anything wrong with my solution?
combinatorics proof-verification generating-functions
combinatorics proof-verification generating-functions
edited Jan 29 at 5:05
Yadati Kiran
2,1121622
2,1121622
asked Jan 29 at 4:37
Mk UtkarshMk Utkarsh
94110
94110
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
The problem is equivalent to that of how many ways of making one pound out of
ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.
I'll try to explain in monochrome. For any $t$,
$$frac1{1-t}=sum_{n=0}^infty t^n$$
at least if $t$ is near zero. Then
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=(1+x^{10}+x^{20}+x^{30}+cdots)\
×
(1+x^{20}+x^{40}+x^{60}+cdots)\
×
(1+x^{50}+x^{100}+x^{150}+cdots)
end{align}
and we see the coefficients of all powers of $x^{10}$ in this expansion
are all positive. More formally,
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
&=sum_{a,b,c=0}^infty x^{10a+20b+50c}
end{align}
so the coefficient of $x^{100}$ is the number of solutions
to $10a+20b+50c=100$ in non-negative integers.
$endgroup$
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
add a comment |
$begingroup$
Hint:
Set $y=x^{10},$
Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$
we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$
$$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$
So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$
$+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )
$+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )
$endgroup$
add a comment |
$begingroup$
Your mistake is in calculating $binom{-1}k$. You had
$$
(-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
$$
The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
$$
(-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
$$
The answer is then
$1+1+1+1+1+1+1+1+1+1=10$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091747%2ffinding-coefficient-of-x100%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The problem is equivalent to that of how many ways of making one pound out of
ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.
I'll try to explain in monochrome. For any $t$,
$$frac1{1-t}=sum_{n=0}^infty t^n$$
at least if $t$ is near zero. Then
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=(1+x^{10}+x^{20}+x^{30}+cdots)\
×
(1+x^{20}+x^{40}+x^{60}+cdots)\
×
(1+x^{50}+x^{100}+x^{150}+cdots)
end{align}
and we see the coefficients of all powers of $x^{10}$ in this expansion
are all positive. More formally,
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
&=sum_{a,b,c=0}^infty x^{10a+20b+50c}
end{align}
so the coefficient of $x^{100}$ is the number of solutions
to $10a+20b+50c=100$ in non-negative integers.
$endgroup$
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
add a comment |
$begingroup$
The problem is equivalent to that of how many ways of making one pound out of
ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.
I'll try to explain in monochrome. For any $t$,
$$frac1{1-t}=sum_{n=0}^infty t^n$$
at least if $t$ is near zero. Then
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=(1+x^{10}+x^{20}+x^{30}+cdots)\
×
(1+x^{20}+x^{40}+x^{60}+cdots)\
×
(1+x^{50}+x^{100}+x^{150}+cdots)
end{align}
and we see the coefficients of all powers of $x^{10}$ in this expansion
are all positive. More formally,
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
&=sum_{a,b,c=0}^infty x^{10a+20b+50c}
end{align}
so the coefficient of $x^{100}$ is the number of solutions
to $10a+20b+50c=100$ in non-negative integers.
$endgroup$
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
add a comment |
$begingroup$
The problem is equivalent to that of how many ways of making one pound out of
ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.
I'll try to explain in monochrome. For any $t$,
$$frac1{1-t}=sum_{n=0}^infty t^n$$
at least if $t$ is near zero. Then
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=(1+x^{10}+x^{20}+x^{30}+cdots)\
×
(1+x^{20}+x^{40}+x^{60}+cdots)\
×
(1+x^{50}+x^{100}+x^{150}+cdots)
end{align}
and we see the coefficients of all powers of $x^{10}$ in this expansion
are all positive. More formally,
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
&=sum_{a,b,c=0}^infty x^{10a+20b+50c}
end{align}
so the coefficient of $x^{100}$ is the number of solutions
to $10a+20b+50c=100$ in non-negative integers.
$endgroup$
The problem is equivalent to that of how many ways of making one pound out of
ten-pence, twenty-pence and fifty-pence pieces, an just writing out all possibilities rapidly gives ten of them.
I'll try to explain in monochrome. For any $t$,
$$frac1{1-t}=sum_{n=0}^infty t^n$$
at least if $t$ is near zero. Then
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=(1+x^{10}+x^{20}+x^{30}+cdots)\
×
(1+x^{20}+x^{40}+x^{60}+cdots)\
×
(1+x^{50}+x^{100}+x^{150}+cdots)
end{align}
and we see the coefficients of all powers of $x^{10}$ in this expansion
are all positive. More formally,
begin{align}
frac1{(1-x^{10})(1-x^{20})(1-x^{50})}
&=sum_{a=0}^infty x^{10a}sum_{b=0}^infty x^{20b}sum_{c=0}^infty x^{50c}\
&=sum_{a,b,c=0}^infty x^{10a+20b+50c}
end{align}
so the coefficient of $x^{100}$ is the number of solutions
to $10a+20b+50c=100$ in non-negative integers.
edited Jan 29 at 5:43
Mk Utkarsh
94110
94110
answered Jan 29 at 4:51
Lord Shark the UnknownLord Shark the Unknown
107k1162135
107k1162135
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
add a comment |
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
$begingroup$
I understood your explanation, its crystal clear but still what's wrong with my solution, if I ignore all powers of -1 then I get correct answer however in extended binomial theorem there is power to (-1)
$endgroup$
– Mk Utkarsh
Jan 29 at 5:46
add a comment |
$begingroup$
Hint:
Set $y=x^{10},$
Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$
we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$
$$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$
So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$
$+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )
$+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )
$endgroup$
add a comment |
$begingroup$
Hint:
Set $y=x^{10},$
Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$
we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$
$$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$
So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$
$+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )
$+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )
$endgroup$
add a comment |
$begingroup$
Hint:
Set $y=x^{10},$
Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$
we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$
$$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$
So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$
$+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )
$+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )
$endgroup$
Hint:
Set $y=x^{10},$
Now for $|y|<1, (1-y)^{-1}=1+y+y^2+cdots$
we need the coefficient of $y^{10}$ in $$(1-y^5)^{-1}(1-y^2)^{-1}(1-y)^{-1}$$
$$=(1+y^5+y^{10}+cdots)(1-y^2)^{-1}(1-y)^{-1}$$
So, the coefficient of $y^{10}$ in $(1-y^2)^{-1}(1-y)^{-1}$(which is $6$ due to $1cdot y^{10},y^2cdot y^8,y^4cdot y^6,y^6cdot y^4,y^8cdot y^2,,y^{10}cdot y^0)$
$+$ the coefficient of $y^{10-5}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $3,$ how ? )
$+$ the coefficient of $y^{10-10}$ in $(1-y^2)^{-1}(1-y)^{-1}$ (which is $1$ )
answered Jan 29 at 4:46
lab bhattacharjeelab bhattacharjee
228k15158279
228k15158279
add a comment |
add a comment |
$begingroup$
Your mistake is in calculating $binom{-1}k$. You had
$$
(-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
$$
The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
$$
(-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
$$
The answer is then
$1+1+1+1+1+1+1+1+1+1=10$.
$endgroup$
add a comment |
$begingroup$
Your mistake is in calculating $binom{-1}k$. You had
$$
(-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
$$
The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
$$
(-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
$$
The answer is then
$1+1+1+1+1+1+1+1+1+1=10$.
$endgroup$
add a comment |
$begingroup$
Your mistake is in calculating $binom{-1}k$. You had
$$
(-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
$$
The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
$$
(-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
$$
The answer is then
$1+1+1+1+1+1+1+1+1+1=10$.
$endgroup$
Your mistake is in calculating $binom{-1}k$. You had
$$
(-1)^{10}binom{-1}{10}+(-1)^5binom{-1}{5}+dots=(-1)^{10}cdot 1+(-1)^5cdot color{red}1+dots
$$
The one in red is a mistake. $binom{-1}{5}=frac{(-1)(-2)cdots(-5)}{5!}=(-1)^5=-1$. In fact, your summation should just be a summation of ten ones, because each summand is a product of numbers of the form
$$
(-1)^kbinom{-1}{k}=(-1)^k(-1)^k=(-1)^{2k}=1
$$
The answer is then
$1+1+1+1+1+1+1+1+1+1=10$.
edited Jan 29 at 18:56
answered Jan 29 at 17:56
Mike EarnestMike Earnest
26.3k22151
26.3k22151
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091747%2ffinding-coefficient-of-x100%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown