Convergence of Fourier series in $alpha$-Hölder norm.
$begingroup$
For $alphain(0,1]$, define the $alpha$-Hölder space on the 1-torus $mathbb{T}:=mathbb{R}/2pimathbb{Z}$ as the space:
$$C^{0,alpha}(mathbb{T}):={fin C(mathbb{T}) | sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}<+infty}.$$
Define:
$$|cdot|_{C^{0,alpha}(mathbb{T})}:C^{0,alpha}(mathbb{T})to[0,+infty), fmapsto |f|_infty+sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}.$$
Then $(C^{0,alpha}(mathbb{T}),|cdot|_{C^{0,alpha}(mathbb{T})})$ is a Banach space.
Define $$forall ninmathbb{Z}, forall tinmathbb{T},e_n(t):=e^{int}$$ and if $fin L^1(mathbb{T})$, the Fourier tranform of $f$ will be denoted by $hat{f}$, i.e. $$forall ninmathbb{Z},hat{f}(n)=int_{-pi}^pi f(t)e_{-n}(t)frac{operatorname{d}t}{2pi}.$$
I know from the answers to this question that:
$$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_infty to0, Nto +infty$$
While, since $C^{0,1}(mathbb{T})$ is essentially the Sobolev space $W^{1,infty}(mathbb{T})$, I know that: $$exists fin C^{0,1}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,1}(mathbb{T})}notto0, Nto+infty.$$
For which $alphain(0,1)$, is it true that $$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,alpha}(mathbb{T})}to0, Nto +infty?$$
fourier-series holder-spaces
$endgroup$
add a comment |
$begingroup$
For $alphain(0,1]$, define the $alpha$-Hölder space on the 1-torus $mathbb{T}:=mathbb{R}/2pimathbb{Z}$ as the space:
$$C^{0,alpha}(mathbb{T}):={fin C(mathbb{T}) | sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}<+infty}.$$
Define:
$$|cdot|_{C^{0,alpha}(mathbb{T})}:C^{0,alpha}(mathbb{T})to[0,+infty), fmapsto |f|_infty+sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}.$$
Then $(C^{0,alpha}(mathbb{T}),|cdot|_{C^{0,alpha}(mathbb{T})})$ is a Banach space.
Define $$forall ninmathbb{Z}, forall tinmathbb{T},e_n(t):=e^{int}$$ and if $fin L^1(mathbb{T})$, the Fourier tranform of $f$ will be denoted by $hat{f}$, i.e. $$forall ninmathbb{Z},hat{f}(n)=int_{-pi}^pi f(t)e_{-n}(t)frac{operatorname{d}t}{2pi}.$$
I know from the answers to this question that:
$$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_infty to0, Nto +infty$$
While, since $C^{0,1}(mathbb{T})$ is essentially the Sobolev space $W^{1,infty}(mathbb{T})$, I know that: $$exists fin C^{0,1}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,1}(mathbb{T})}notto0, Nto+infty.$$
For which $alphain(0,1)$, is it true that $$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,alpha}(mathbb{T})}to0, Nto +infty?$$
fourier-series holder-spaces
$endgroup$
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31
add a comment |
$begingroup$
For $alphain(0,1]$, define the $alpha$-Hölder space on the 1-torus $mathbb{T}:=mathbb{R}/2pimathbb{Z}$ as the space:
$$C^{0,alpha}(mathbb{T}):={fin C(mathbb{T}) | sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}<+infty}.$$
Define:
$$|cdot|_{C^{0,alpha}(mathbb{T})}:C^{0,alpha}(mathbb{T})to[0,+infty), fmapsto |f|_infty+sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}.$$
Then $(C^{0,alpha}(mathbb{T}),|cdot|_{C^{0,alpha}(mathbb{T})})$ is a Banach space.
Define $$forall ninmathbb{Z}, forall tinmathbb{T},e_n(t):=e^{int}$$ and if $fin L^1(mathbb{T})$, the Fourier tranform of $f$ will be denoted by $hat{f}$, i.e. $$forall ninmathbb{Z},hat{f}(n)=int_{-pi}^pi f(t)e_{-n}(t)frac{operatorname{d}t}{2pi}.$$
I know from the answers to this question that:
$$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_infty to0, Nto +infty$$
While, since $C^{0,1}(mathbb{T})$ is essentially the Sobolev space $W^{1,infty}(mathbb{T})$, I know that: $$exists fin C^{0,1}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,1}(mathbb{T})}notto0, Nto+infty.$$
For which $alphain(0,1)$, is it true that $$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,alpha}(mathbb{T})}to0, Nto +infty?$$
fourier-series holder-spaces
$endgroup$
For $alphain(0,1]$, define the $alpha$-Hölder space on the 1-torus $mathbb{T}:=mathbb{R}/2pimathbb{Z}$ as the space:
$$C^{0,alpha}(mathbb{T}):={fin C(mathbb{T}) | sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}<+infty}.$$
Define:
$$|cdot|_{C^{0,alpha}(mathbb{T})}:C^{0,alpha}(mathbb{T})to[0,+infty), fmapsto |f|_infty+sup_{s,tinmathbb{T}\sneq t}frac{|f(s)-f(t)|}{|s-t|^alpha}.$$
Then $(C^{0,alpha}(mathbb{T}),|cdot|_{C^{0,alpha}(mathbb{T})})$ is a Banach space.
Define $$forall ninmathbb{Z}, forall tinmathbb{T},e_n(t):=e^{int}$$ and if $fin L^1(mathbb{T})$, the Fourier tranform of $f$ will be denoted by $hat{f}$, i.e. $$forall ninmathbb{Z},hat{f}(n)=int_{-pi}^pi f(t)e_{-n}(t)frac{operatorname{d}t}{2pi}.$$
I know from the answers to this question that:
$$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_infty to0, Nto +infty$$
While, since $C^{0,1}(mathbb{T})$ is essentially the Sobolev space $W^{1,infty}(mathbb{T})$, I know that: $$exists fin C^{0,1}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,1}(mathbb{T})}notto0, Nto+infty.$$
For which $alphain(0,1)$, is it true that $$forall fin C^{0,alpha}(mathbb{T}), |sum_{n=-N}^N hat{f}(n)e_n-f|_{C^{0,alpha}(mathbb{T})}to0, Nto +infty?$$
fourier-series holder-spaces
fourier-series holder-spaces
edited Jan 29 at 21:20
Bob
asked Jan 28 at 22:27


BobBob
1,7101725
1,7101725
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31
add a comment |
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091483%2fconvergence-of-fourier-series-in-alpha-h%25c3%25b6lder-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091483%2fconvergence-of-fourier-series-in-alpha-h%25c3%25b6lder-norm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
What is the explicit bound in the Dirichlet kernel + Holder continuity proof of the convergence of Fourier series ? If $f$ is $alpha$-Holder continuous $1$-periodic then $|f(x)-f ast D_N(x)| le h_{alpha,N}( |f|_infty,sup_{x,y} frac{|f(x)-f(y)|}{(x-y)^alpha})$ where $D_N(x) =sum_{|n| le N} e^{2i pi nx} $, $f ast D_N(x)= int_0^1 f(y) D_n(x-y)dy=sum_{|n| le N} hat{f}(n)e^{2i pi nx}$. I'm asking the exact form of that function $h_{alpha,N}$.
$endgroup$
– reuns
Jan 29 at 0:22
$begingroup$
I think that an explicit form for $h_{alpha,N}$ can be deduced from my answer in the linked question. It is hidden inside the constant $C$ in the last estimate: it is enough to unpack the other constants which $C$ is built from
$endgroup$
– Bob
Jan 29 at 0:31