Find limit of function of two variables (if exist)












1












$begingroup$


Find $$
lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
$$



My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Find $$
    lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
    $$



    My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Find $$
      lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
      $$



      My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.










      share|cite|improve this question









      $endgroup$




      Find $$
      lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
      $$



      My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.







      limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 28 at 22:54









      akapakap

      785




      785






















          1 Answer
          1






          active

          oldest

          votes


















          1












          $begingroup$

          I would expect the limit to exist and be zero.




          • Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.


          • We also have, for small $t$, $|sin t|leq t$.


          • And, $(a+b)^3leq 4a^3+4b^3$.



          Thus, for $(x,y)$ close to $(pi,0)$,
          begin{align}
          left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
          &=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
          leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
          leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
          &leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
          &leq12|x-pi|+12|y|,
          end{align}

          using that
          $$
          left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
            $endgroup$
            – akap
            Jan 28 at 23:20








          • 1




            $begingroup$
            Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
            $endgroup$
            – Martin Argerami
            Jan 28 at 23:28












          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091505%2ffind-limit-of-function-of-two-variables-if-exist%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          1












          $begingroup$

          I would expect the limit to exist and be zero.




          • Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.


          • We also have, for small $t$, $|sin t|leq t$.


          • And, $(a+b)^3leq 4a^3+4b^3$.



          Thus, for $(x,y)$ close to $(pi,0)$,
          begin{align}
          left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
          &=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
          leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
          leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
          &leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
          &leq12|x-pi|+12|y|,
          end{align}

          using that
          $$
          left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
            $endgroup$
            – akap
            Jan 28 at 23:20








          • 1




            $begingroup$
            Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
            $endgroup$
            – Martin Argerami
            Jan 28 at 23:28
















          1












          $begingroup$

          I would expect the limit to exist and be zero.




          • Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.


          • We also have, for small $t$, $|sin t|leq t$.


          • And, $(a+b)^3leq 4a^3+4b^3$.



          Thus, for $(x,y)$ close to $(pi,0)$,
          begin{align}
          left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
          &=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
          leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
          leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
          &leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
          &leq12|x-pi|+12|y|,
          end{align}

          using that
          $$
          left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
          $$






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
            $endgroup$
            – akap
            Jan 28 at 23:20








          • 1




            $begingroup$
            Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
            $endgroup$
            – Martin Argerami
            Jan 28 at 23:28














          1












          1








          1





          $begingroup$

          I would expect the limit to exist and be zero.




          • Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.


          • We also have, for small $t$, $|sin t|leq t$.


          • And, $(a+b)^3leq 4a^3+4b^3$.



          Thus, for $(x,y)$ close to $(pi,0)$,
          begin{align}
          left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
          &=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
          leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
          leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
          &leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
          &leq12|x-pi|+12|y|,
          end{align}

          using that
          $$
          left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
          $$






          share|cite|improve this answer











          $endgroup$



          I would expect the limit to exist and be zero.




          • Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.


          • We also have, for small $t$, $|sin t|leq t$.


          • And, $(a+b)^3leq 4a^3+4b^3$.



          Thus, for $(x,y)$ close to $(pi,0)$,
          begin{align}
          left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
          &=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
          leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
          leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
          &leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
          &leq12|x-pi|+12|y|,
          end{align}

          using that
          $$
          left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
          $$







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited Jan 28 at 23:25

























          answered Jan 28 at 23:11









          Martin ArgeramiMartin Argerami

          129k1184184




          129k1184184












          • $begingroup$
            So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
            $endgroup$
            – akap
            Jan 28 at 23:20








          • 1




            $begingroup$
            Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
            $endgroup$
            – Martin Argerami
            Jan 28 at 23:28


















          • $begingroup$
            So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
            $endgroup$
            – akap
            Jan 28 at 23:20








          • 1




            $begingroup$
            Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
            $endgroup$
            – Martin Argerami
            Jan 28 at 23:28
















          $begingroup$
          So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
          $endgroup$
          – akap
          Jan 28 at 23:20






          $begingroup$
          So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
          $endgroup$
          – akap
          Jan 28 at 23:20






          1




          1




          $begingroup$
          Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
          $endgroup$
          – Martin Argerami
          Jan 28 at 23:28




          $begingroup$
          Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
          $endgroup$
          – Martin Argerami
          Jan 28 at 23:28


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091505%2ffind-limit-of-function-of-two-variables-if-exist%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          MongoDB - Not Authorized To Execute Command

          How to fix TextFormField cause rebuild widget in Flutter

          in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith