Find limit of function of two variables (if exist)
$begingroup$
Find $$
lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
$$
My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.
limits
$endgroup$
add a comment |
$begingroup$
Find $$
lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
$$
My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.
limits
$endgroup$
add a comment |
$begingroup$
Find $$
lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
$$
My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.
limits
$endgroup$
Find $$
lim_{(x,0)to (pi,0)}frac{3sin^3(x+y)}{y^2+(x-pi)^2}.
$$
My attempt was to show that that limit does not exist. But for any pairs(checked by me) of $(x_n,y_n)to(pi,0)$ this function tends to $0$ (when $nto infty$) (for example I checked $(x_n,y_n)=(frac{1}{n}+pi,frac{1}{n}).$ I would be grateful for your hints and ideas.
limits
limits
asked Jan 28 at 22:54
akapakap
785
785
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I would expect the limit to exist and be zero.
Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.
We also have, for small $t$, $|sin t|leq t$.
And, $(a+b)^3leq 4a^3+4b^3$.
Thus, for $(x,y)$ close to $(pi,0)$,
begin{align}
left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
&=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
&leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
&leq12|x-pi|+12|y|,
end{align}
using that
$$
left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
$$
$endgroup$
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091505%2ffind-limit-of-function-of-two-variables-if-exist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I would expect the limit to exist and be zero.
Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.
We also have, for small $t$, $|sin t|leq t$.
And, $(a+b)^3leq 4a^3+4b^3$.
Thus, for $(x,y)$ close to $(pi,0)$,
begin{align}
left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
&=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
&leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
&leq12|x-pi|+12|y|,
end{align}
using that
$$
left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
$$
$endgroup$
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
add a comment |
$begingroup$
I would expect the limit to exist and be zero.
Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.
We also have, for small $t$, $|sin t|leq t$.
And, $(a+b)^3leq 4a^3+4b^3$.
Thus, for $(x,y)$ close to $(pi,0)$,
begin{align}
left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
&=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
&leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
&leq12|x-pi|+12|y|,
end{align}
using that
$$
left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
$$
$endgroup$
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
add a comment |
$begingroup$
I would expect the limit to exist and be zero.
Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.
We also have, for small $t$, $|sin t|leq t$.
And, $(a+b)^3leq 4a^3+4b^3$.
Thus, for $(x,y)$ close to $(pi,0)$,
begin{align}
left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
&=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
&leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
&leq12|x-pi|+12|y|,
end{align}
using that
$$
left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
$$
$endgroup$
I would expect the limit to exist and be zero.
Note that $sin (tpmpi)=pmsin t$. So $sin (x+y)=-sin (x-pi+y)$.
We also have, for small $t$, $|sin t|leq t$.
And, $(a+b)^3leq 4a^3+4b^3$.
Thus, for $(x,y)$ close to $(pi,0)$,
begin{align}
left|frac{3sin^3(x+y)}{y^2+(x-pi)^2}right|
&=left|frac{3sin^3(x-pi+y)}{y^2+(x-pi)^2}right|
leqleft|frac{3(x-pi+y)^3}{y^2+(x-pi)^2}right|
leqleft|frac{12(x-pi)^3+12y^3}{y^2+(x-pi)^2}right|\ \
&leqleft|frac{12(x-pi)^3 }{y^2+(x-pi)^2}right|+left|frac{ 12y^3}{y^2+(x-pi)^2}right|\ \
&leq12|x-pi|+12|y|,
end{align}
using that
$$
left|frac{ (x-pi)^2 }{y^2+(x-pi)^2}right|leq1, left|frac{ y^2 }{y^2+(x-pi)^2}right|leq1.
$$
edited Jan 28 at 23:25
answered Jan 28 at 23:11


Martin ArgeramiMartin Argerami
129k1184184
129k1184184
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
add a comment |
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
$begingroup$
So that's mean that limit is equal $0$. (Maybe one more comment, smal correction - without 12 in last line(in modules)). So wolframalpha.com/input/… wolfram make mistake?
$endgroup$
– akap
Jan 28 at 23:20
1
1
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
$begingroup$
Yes and yes. I think whatever algorithm it uses is getting confused with the sine.
$endgroup$
– Martin Argerami
Jan 28 at 23:28
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091505%2ffind-limit-of-function-of-two-variables-if-exist%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown