How to show that $2730mid n^{13}-n;;forall ninmathbb{N}$












8












$begingroup$



Show that $2730mid n^{13}-n,;;forall ninmathbb{N}$




I tried, $2730=13cdot5cdot7cdot3cdot2$



We have $13mid n^{13}-n$, by Fermat's Little Theorem.



We have $2mid n^{13}-n$, by if $n$ even then $n^{13}-n$ too is even; if $n$ is odd $n^{13}-n$ is odd.



And the numbers $5$ and $7$, how to proceed?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It seems like a factorization of $n^{13}-n$ should do it.
    $endgroup$
    – user99680
    Dec 6 '13 at 21:12












  • $begingroup$
    See also math.stackexchange.com/questions/1387239/…
    $endgroup$
    – Martin Sleziak
    Aug 7 '15 at 10:03










  • $begingroup$
    By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
    $endgroup$
    – fleablood
    Jul 5 '16 at 19:33
















8












$begingroup$



Show that $2730mid n^{13}-n,;;forall ninmathbb{N}$




I tried, $2730=13cdot5cdot7cdot3cdot2$



We have $13mid n^{13}-n$, by Fermat's Little Theorem.



We have $2mid n^{13}-n$, by if $n$ even then $n^{13}-n$ too is even; if $n$ is odd $n^{13}-n$ is odd.



And the numbers $5$ and $7$, how to proceed?










share|cite|improve this question











$endgroup$








  • 1




    $begingroup$
    It seems like a factorization of $n^{13}-n$ should do it.
    $endgroup$
    – user99680
    Dec 6 '13 at 21:12












  • $begingroup$
    See also math.stackexchange.com/questions/1387239/…
    $endgroup$
    – Martin Sleziak
    Aug 7 '15 at 10:03










  • $begingroup$
    By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
    $endgroup$
    – fleablood
    Jul 5 '16 at 19:33














8












8








8





$begingroup$



Show that $2730mid n^{13}-n,;;forall ninmathbb{N}$




I tried, $2730=13cdot5cdot7cdot3cdot2$



We have $13mid n^{13}-n$, by Fermat's Little Theorem.



We have $2mid n^{13}-n$, by if $n$ even then $n^{13}-n$ too is even; if $n$ is odd $n^{13}-n$ is odd.



And the numbers $5$ and $7$, how to proceed?










share|cite|improve this question











$endgroup$





Show that $2730mid n^{13}-n,;;forall ninmathbb{N}$




I tried, $2730=13cdot5cdot7cdot3cdot2$



We have $13mid n^{13}-n$, by Fermat's Little Theorem.



We have $2mid n^{13}-n$, by if $n$ even then $n^{13}-n$ too is even; if $n$ is odd $n^{13}-n$ is odd.



And the numbers $5$ and $7$, how to proceed?







elementary-number-theory divisibility totient-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 7 '15 at 10:21









Jyrki Lahtonen

110k13172387




110k13172387










asked Dec 6 '13 at 21:09









marcelolpjuniormarcelolpjunior

1,99031743




1,99031743








  • 1




    $begingroup$
    It seems like a factorization of $n^{13}-n$ should do it.
    $endgroup$
    – user99680
    Dec 6 '13 at 21:12












  • $begingroup$
    See also math.stackexchange.com/questions/1387239/…
    $endgroup$
    – Martin Sleziak
    Aug 7 '15 at 10:03










  • $begingroup$
    By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
    $endgroup$
    – fleablood
    Jul 5 '16 at 19:33














  • 1




    $begingroup$
    It seems like a factorization of $n^{13}-n$ should do it.
    $endgroup$
    – user99680
    Dec 6 '13 at 21:12












  • $begingroup$
    See also math.stackexchange.com/questions/1387239/…
    $endgroup$
    – Martin Sleziak
    Aug 7 '15 at 10:03










  • $begingroup$
    By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
    $endgroup$
    – fleablood
    Jul 5 '16 at 19:33








1




1




$begingroup$
It seems like a factorization of $n^{13}-n$ should do it.
$endgroup$
– user99680
Dec 6 '13 at 21:12






$begingroup$
It seems like a factorization of $n^{13}-n$ should do it.
$endgroup$
– user99680
Dec 6 '13 at 21:12














$begingroup$
See also math.stackexchange.com/questions/1387239/…
$endgroup$
– Martin Sleziak
Aug 7 '15 at 10:03




$begingroup$
See also math.stackexchange.com/questions/1387239/…
$endgroup$
– Martin Sleziak
Aug 7 '15 at 10:03












$begingroup$
By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
$endgroup$
– fleablood
Jul 5 '16 at 19:33




$begingroup$
By FLT $5|n^5 - n$ , $7|n^7 - n$ and $3|n^3 - n$. $n^13 - n = n(n^12 - 1) = n(n^6 + 1)(n^6 - 1) = n(n^6+1)(n^3 + 1)(n^3 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n^2 - 1) = n(n^6+1)(n^3 + 1)(n^2 + n + 1)(n+1) (n-1)$. $n^7 - n = n(n^6 - 1)$ is a factor. $n^3 -n = n(n^2 - 1)$ is a factor. 5? well if $n = i mod 5$ if i = 0 5|n if i = 1 5|n - 1. If i = 4 5|n+1. If i = 2 or 3 5|n^6+1.
$endgroup$
– fleablood
Jul 5 '16 at 19:33










10 Answers
10






active

oldest

votes


















6












$begingroup$

Like user99680,



Using Fermat's Little Theorem $p|(n^p-n)$ where $n$ is any integer and $p$ is any prime



$displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^6)^2-1right)=n(n^6-1)(n^6+1)=(n^7-n)(n^6+1)$ which is divisible by $displaystyle n^7-n$ which is always divisible by $7$ for all integer $n$



Similarly, $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^4)^3-1right)$
$displaystyle=n(n^4-1)(n^8+n^4+1)=(n^5-n)(n^8+n^4+1)$ which is divisible by $displaystyle n^5-n$ which is always divisible by $5$ for all integer $n$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
    $endgroup$
    – PM 2Ring
    Aug 7 '15 at 10:29



















10












$begingroup$

HINT:



$$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5$$



$$n^{13} equiv n^6 cdot n^7 equiv n pmod 7$$



Also you've missed $3$ as prime factor. But that should be easy.






share|cite|improve this answer









$endgroup$





















    5












    $begingroup$

    One Approach



    If $kmid n$, then $x^{k+1}-xmid x^{n+1}-x$. Therefore,
    $$
    begin{array}{}
    13&mid&n^{13}-n\
    7&mid&n^7-n&mid&n^{13}-n&text{since }6mid12\
    5&mid&n^5-n&mid&n^{13}-n&text{since }4mid12\
    3&mid&n^3-n&mid&n^{13}-n&text{since }2mid12\
    2&mid&n^2-n&mid&n^{13}-n&text{since }1mid12\
    end{array}
    $$
    Since the factors are all relatively prime, we have that
    $$
    2730=2cdot3cdot5cdot7cdot 13mid n^{13}-n
    $$





    Another Approach



    Decomposing into a sum of combinatorial polynomials
    $$
    begin{align}
    n^{13}-n
    &=2730left[vphantom{binom{n}{2}}right.3binom{n}{2}+575binom{n}{3}+22264binom{n}{4}+330044binom{n}{5}\
    &+2458368binom{n}{6}+10551552binom{n}{7}+28055808binom{n}{8}+47786112binom{n}{9}\
    &+52272000binom{n}{10}+35544960binom{n}{11}+13685760binom{n}{12}+2280960binom{n}{13}left.vphantom{binom{n}{2}}right]\
    end{align}
    $$






    share|cite|improve this answer











    $endgroup$









    • 3




      $begingroup$
      Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
      $endgroup$
      – Lubin
      Aug 7 '15 at 12:06










    • $begingroup$
      Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
      $endgroup$
      – robjohn
      Aug 7 '15 at 12:34





















    4












    $begingroup$

    Notice that $n^{13}-n =n(n^{12}-1)=n(n^6+1)(n^6-1)=n(n^6+1)(n^3+1)(n^3-1)=...$






    share|cite|improve this answer









    $endgroup$





















      3












      $begingroup$

      Note that $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5 equiv n^{13} equiv n^6 cdot n^7 equiv n pmod 7.$$






      share|cite|improve this answer









      $endgroup$





















        3












        $begingroup$

        $, n = 2730 = 2cdot 3cdot 5cdot 7cdot 13 = ,$ product of all primes $rm ,p,$ such that $rm color{#c00}{p!-!1mid 13!-!1}.,$ Now apply



        Theorem $ $ For natural numbers $rm:a,e,n:$ with $rm:e,n>1$



        $qquadrm n:|:a^{large e}-a:$ for all $rm:a:iff n:$ is squarefree, and prime $rm:p:|:n,Rightarrow, color{#c00}{p!-!1mid e!-!1}$



        Proof $ $ See this answer for a short simple proof.






        share|cite|improve this answer











        $endgroup$





















          2












          $begingroup$

          $2730 = 2cdot 3cdot 5cdot 7cdot 13$



          The Carmichael function or least universal exponent function is composed by least common multiple over prime components, so $lambda(2730) = text{lcm}(lambda(2), lambda(3), lambda(5), lambda(7), lambda(13)) = text{lcm}(1,2,4,6,12)=12$. Note also that $2730$ is square-free, so the exponent cycle will be entered by the first power ($n^1$) for all numbers. Of course numbers coprime to $2730$ enter the cycle at the zeroth power ($1$).



          Thus(!) $n^{(1+12)}equiv n^1 bmod 2730$ as required.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Cute corollary to FLT.



            If $p,q $ are primes and $p-1=m|q-1=k$ then



            $p|n^p -n=n (n^m-1)|n (n^m-1)(n^{k-m} + n^{k - 2m}+...+n^m+1)=n (n^k-1)=n^q-n $.



            So as $1,2,3,4,6,12$ all divide $12$, it follows $2,3,5,7,13$ all divide $n^{13}- n $.



            For me personally it was hardest to see that 5 did but $n^{13}-n = (n^8 + n^4 + 1)(n^5- n) $ so ... it does.






            share|cite|improve this answer











            $endgroup$





















              0












              $begingroup$

              You can find the Chinese remainder theorem very useful.






              share|cite|improve this answer









              $endgroup$





















                0












                $begingroup$

                Here is some way of automating Rob John's method:



                You can always use decomposition over polynomials :$quaddisplaystyle Pi_k(n)=k!binom nk=prodlimits_{i=0}^{k-1} (n-i)$



                e.g. $ Pi_4(n)=(n-3)(n-2)(n-1)n$




                To solve problems of the type: "show $m$ divides the polynomial $P(n)$"




                Let have a look at a simpler example using this technique :



                Prove $(n^5-n)$ is divisible by 5 by induction.



                Though for $n^{13}-n$ it is a bit tedious.



                Here is a maple procedure to do it:



                > binomexpansion :=proc(P)
                local a,b,c,d,i,p,q:
                p:=P: d:= degree(P):
                printf("%a = ",P):
                for i from d to 0 by -1 do
                a:=coeff(p,n,i):
                q:=expand(binomial(n,i)):
                b:=coeff(q,n,i):
                c:=a/b:
                p:=p-c*q:
                if((c>0)and(i<d)) then printf("+"); fi:
                if(c<>0) then printf("%d(n,%d)",c,i); fi:
                end do: printf("n"):
                end proc

                > binomexpansion(n^13-n);

                n^13-n = 6227020800(n,13)+37362124800(n,12)+97037740800(n,11)+142702560000(n,10)+
                130456085760(n,9)+76592355840(n,8)+28805736960(n,7)+6711344640(n,6)+
                901020120(n,5)+60780720(n,4)+1569750(n,3)+8190(n,2)


                You can notice that all coefficients are divisible by $2730=2.3.5.7.13$.



                And since the binomial coefficients are integers, you get the divisibility by $2730$ as a result.






                share|cite|improve this answer









                $endgroup$














                  Your Answer





                  StackExchange.ifUsing("editor", function () {
                  return StackExchange.using("mathjaxEditing", function () {
                  StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
                  StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
                  });
                  });
                  }, "mathjax-editing");

                  StackExchange.ready(function() {
                  var channelOptions = {
                  tags: "".split(" "),
                  id: "69"
                  };
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function() {
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled) {
                  StackExchange.using("snippets", function() {
                  createEditor();
                  });
                  }
                  else {
                  createEditor();
                  }
                  });

                  function createEditor() {
                  StackExchange.prepareEditor({
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: true,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: 10,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader: {
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  },
                  noCode: true, onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  });


                  }
                  });














                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function () {
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f596074%2fhow-to-show-that-2730-mid-n13-n-forall-n-in-mathbbn%23new-answer', 'question_page');
                  }
                  );

                  Post as a guest















                  Required, but never shown

























                  10 Answers
                  10






                  active

                  oldest

                  votes








                  10 Answers
                  10






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  6












                  $begingroup$

                  Like user99680,



                  Using Fermat's Little Theorem $p|(n^p-n)$ where $n$ is any integer and $p$ is any prime



                  $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^6)^2-1right)=n(n^6-1)(n^6+1)=(n^7-n)(n^6+1)$ which is divisible by $displaystyle n^7-n$ which is always divisible by $7$ for all integer $n$



                  Similarly, $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^4)^3-1right)$
                  $displaystyle=n(n^4-1)(n^8+n^4+1)=(n^5-n)(n^8+n^4+1)$ which is divisible by $displaystyle n^5-n$ which is always divisible by $5$ for all integer $n$






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                    $endgroup$
                    – PM 2Ring
                    Aug 7 '15 at 10:29
















                  6












                  $begingroup$

                  Like user99680,



                  Using Fermat's Little Theorem $p|(n^p-n)$ where $n$ is any integer and $p$ is any prime



                  $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^6)^2-1right)=n(n^6-1)(n^6+1)=(n^7-n)(n^6+1)$ which is divisible by $displaystyle n^7-n$ which is always divisible by $7$ for all integer $n$



                  Similarly, $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^4)^3-1right)$
                  $displaystyle=n(n^4-1)(n^8+n^4+1)=(n^5-n)(n^8+n^4+1)$ which is divisible by $displaystyle n^5-n$ which is always divisible by $5$ for all integer $n$






                  share|cite|improve this answer











                  $endgroup$













                  • $begingroup$
                    You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                    $endgroup$
                    – PM 2Ring
                    Aug 7 '15 at 10:29














                  6












                  6








                  6





                  $begingroup$

                  Like user99680,



                  Using Fermat's Little Theorem $p|(n^p-n)$ where $n$ is any integer and $p$ is any prime



                  $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^6)^2-1right)=n(n^6-1)(n^6+1)=(n^7-n)(n^6+1)$ which is divisible by $displaystyle n^7-n$ which is always divisible by $7$ for all integer $n$



                  Similarly, $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^4)^3-1right)$
                  $displaystyle=n(n^4-1)(n^8+n^4+1)=(n^5-n)(n^8+n^4+1)$ which is divisible by $displaystyle n^5-n$ which is always divisible by $5$ for all integer $n$






                  share|cite|improve this answer











                  $endgroup$



                  Like user99680,



                  Using Fermat's Little Theorem $p|(n^p-n)$ where $n$ is any integer and $p$ is any prime



                  $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^6)^2-1right)=n(n^6-1)(n^6+1)=(n^7-n)(n^6+1)$ which is divisible by $displaystyle n^7-n$ which is always divisible by $7$ for all integer $n$



                  Similarly, $displaystyle n^{13}-n=n(n^{12}-1)=nleft((n^4)^3-1right)$
                  $displaystyle=n(n^4-1)(n^8+n^4+1)=(n^5-n)(n^8+n^4+1)$ which is divisible by $displaystyle n^5-n$ which is always divisible by $5$ for all integer $n$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Aug 7 '15 at 11:09









                  vonbrand

                  20k63260




                  20k63260










                  answered Dec 7 '13 at 5:26









                  lab bhattacharjeelab bhattacharjee

                  228k15158279




                  228k15158279












                  • $begingroup$
                    You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                    $endgroup$
                    – PM 2Ring
                    Aug 7 '15 at 10:29


















                  • $begingroup$
                    You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                    $endgroup$
                    – PM 2Ring
                    Aug 7 '15 at 10:29
















                  $begingroup$
                  You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                  $endgroup$
                  – PM 2Ring
                  Aug 7 '15 at 10:29




                  $begingroup$
                  You have a typo: $P|(n^p-n)$ should be $p|(n^p-n)$
                  $endgroup$
                  – PM 2Ring
                  Aug 7 '15 at 10:29











                  10












                  $begingroup$

                  HINT:



                  $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5$$



                  $$n^{13} equiv n^6 cdot n^7 equiv n pmod 7$$



                  Also you've missed $3$ as prime factor. But that should be easy.






                  share|cite|improve this answer









                  $endgroup$


















                    10












                    $begingroup$

                    HINT:



                    $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5$$



                    $$n^{13} equiv n^6 cdot n^7 equiv n pmod 7$$



                    Also you've missed $3$ as prime factor. But that should be easy.






                    share|cite|improve this answer









                    $endgroup$
















                      10












                      10








                      10





                      $begingroup$

                      HINT:



                      $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5$$



                      $$n^{13} equiv n^6 cdot n^7 equiv n pmod 7$$



                      Also you've missed $3$ as prime factor. But that should be easy.






                      share|cite|improve this answer









                      $endgroup$



                      HINT:



                      $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5$$



                      $$n^{13} equiv n^6 cdot n^7 equiv n pmod 7$$



                      Also you've missed $3$ as prime factor. But that should be easy.







                      share|cite|improve this answer












                      share|cite|improve this answer



                      share|cite|improve this answer










                      answered Dec 6 '13 at 21:15









                      Stefan4024Stefan4024

                      30.6k63579




                      30.6k63579























                          5












                          $begingroup$

                          One Approach



                          If $kmid n$, then $x^{k+1}-xmid x^{n+1}-x$. Therefore,
                          $$
                          begin{array}{}
                          13&mid&n^{13}-n\
                          7&mid&n^7-n&mid&n^{13}-n&text{since }6mid12\
                          5&mid&n^5-n&mid&n^{13}-n&text{since }4mid12\
                          3&mid&n^3-n&mid&n^{13}-n&text{since }2mid12\
                          2&mid&n^2-n&mid&n^{13}-n&text{since }1mid12\
                          end{array}
                          $$
                          Since the factors are all relatively prime, we have that
                          $$
                          2730=2cdot3cdot5cdot7cdot 13mid n^{13}-n
                          $$





                          Another Approach



                          Decomposing into a sum of combinatorial polynomials
                          $$
                          begin{align}
                          n^{13}-n
                          &=2730left[vphantom{binom{n}{2}}right.3binom{n}{2}+575binom{n}{3}+22264binom{n}{4}+330044binom{n}{5}\
                          &+2458368binom{n}{6}+10551552binom{n}{7}+28055808binom{n}{8}+47786112binom{n}{9}\
                          &+52272000binom{n}{10}+35544960binom{n}{11}+13685760binom{n}{12}+2280960binom{n}{13}left.vphantom{binom{n}{2}}right]\
                          end{align}
                          $$






                          share|cite|improve this answer











                          $endgroup$









                          • 3




                            $begingroup$
                            Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                            $endgroup$
                            – Lubin
                            Aug 7 '15 at 12:06










                          • $begingroup$
                            Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                            $endgroup$
                            – robjohn
                            Aug 7 '15 at 12:34


















                          5












                          $begingroup$

                          One Approach



                          If $kmid n$, then $x^{k+1}-xmid x^{n+1}-x$. Therefore,
                          $$
                          begin{array}{}
                          13&mid&n^{13}-n\
                          7&mid&n^7-n&mid&n^{13}-n&text{since }6mid12\
                          5&mid&n^5-n&mid&n^{13}-n&text{since }4mid12\
                          3&mid&n^3-n&mid&n^{13}-n&text{since }2mid12\
                          2&mid&n^2-n&mid&n^{13}-n&text{since }1mid12\
                          end{array}
                          $$
                          Since the factors are all relatively prime, we have that
                          $$
                          2730=2cdot3cdot5cdot7cdot 13mid n^{13}-n
                          $$





                          Another Approach



                          Decomposing into a sum of combinatorial polynomials
                          $$
                          begin{align}
                          n^{13}-n
                          &=2730left[vphantom{binom{n}{2}}right.3binom{n}{2}+575binom{n}{3}+22264binom{n}{4}+330044binom{n}{5}\
                          &+2458368binom{n}{6}+10551552binom{n}{7}+28055808binom{n}{8}+47786112binom{n}{9}\
                          &+52272000binom{n}{10}+35544960binom{n}{11}+13685760binom{n}{12}+2280960binom{n}{13}left.vphantom{binom{n}{2}}right]\
                          end{align}
                          $$






                          share|cite|improve this answer











                          $endgroup$









                          • 3




                            $begingroup$
                            Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                            $endgroup$
                            – Lubin
                            Aug 7 '15 at 12:06










                          • $begingroup$
                            Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                            $endgroup$
                            – robjohn
                            Aug 7 '15 at 12:34
















                          5












                          5








                          5





                          $begingroup$

                          One Approach



                          If $kmid n$, then $x^{k+1}-xmid x^{n+1}-x$. Therefore,
                          $$
                          begin{array}{}
                          13&mid&n^{13}-n\
                          7&mid&n^7-n&mid&n^{13}-n&text{since }6mid12\
                          5&mid&n^5-n&mid&n^{13}-n&text{since }4mid12\
                          3&mid&n^3-n&mid&n^{13}-n&text{since }2mid12\
                          2&mid&n^2-n&mid&n^{13}-n&text{since }1mid12\
                          end{array}
                          $$
                          Since the factors are all relatively prime, we have that
                          $$
                          2730=2cdot3cdot5cdot7cdot 13mid n^{13}-n
                          $$





                          Another Approach



                          Decomposing into a sum of combinatorial polynomials
                          $$
                          begin{align}
                          n^{13}-n
                          &=2730left[vphantom{binom{n}{2}}right.3binom{n}{2}+575binom{n}{3}+22264binom{n}{4}+330044binom{n}{5}\
                          &+2458368binom{n}{6}+10551552binom{n}{7}+28055808binom{n}{8}+47786112binom{n}{9}\
                          &+52272000binom{n}{10}+35544960binom{n}{11}+13685760binom{n}{12}+2280960binom{n}{13}left.vphantom{binom{n}{2}}right]\
                          end{align}
                          $$






                          share|cite|improve this answer











                          $endgroup$



                          One Approach



                          If $kmid n$, then $x^{k+1}-xmid x^{n+1}-x$. Therefore,
                          $$
                          begin{array}{}
                          13&mid&n^{13}-n\
                          7&mid&n^7-n&mid&n^{13}-n&text{since }6mid12\
                          5&mid&n^5-n&mid&n^{13}-n&text{since }4mid12\
                          3&mid&n^3-n&mid&n^{13}-n&text{since }2mid12\
                          2&mid&n^2-n&mid&n^{13}-n&text{since }1mid12\
                          end{array}
                          $$
                          Since the factors are all relatively prime, we have that
                          $$
                          2730=2cdot3cdot5cdot7cdot 13mid n^{13}-n
                          $$





                          Another Approach



                          Decomposing into a sum of combinatorial polynomials
                          $$
                          begin{align}
                          n^{13}-n
                          &=2730left[vphantom{binom{n}{2}}right.3binom{n}{2}+575binom{n}{3}+22264binom{n}{4}+330044binom{n}{5}\
                          &+2458368binom{n}{6}+10551552binom{n}{7}+28055808binom{n}{8}+47786112binom{n}{9}\
                          &+52272000binom{n}{10}+35544960binom{n}{11}+13685760binom{n}{12}+2280960binom{n}{13}left.vphantom{binom{n}{2}}right]\
                          end{align}
                          $$







                          share|cite|improve this answer














                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Aug 7 '15 at 11:31

























                          answered Aug 7 '15 at 11:05









                          robjohnrobjohn

                          270k27312640




                          270k27312640








                          • 3




                            $begingroup$
                            Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                            $endgroup$
                            – Lubin
                            Aug 7 '15 at 12:06










                          • $begingroup$
                            Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                            $endgroup$
                            – robjohn
                            Aug 7 '15 at 12:34
















                          • 3




                            $begingroup$
                            Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                            $endgroup$
                            – Lubin
                            Aug 7 '15 at 12:06










                          • $begingroup$
                            Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                            $endgroup$
                            – robjohn
                            Aug 7 '15 at 12:34










                          3




                          3




                          $begingroup$
                          Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                          $endgroup$
                          – Lubin
                          Aug 7 '15 at 12:06




                          $begingroup$
                          Your second approach is what I would have tried, but seeing your result, I’m glad I didn’t try it.
                          $endgroup$
                          – Lubin
                          Aug 7 '15 at 12:06












                          $begingroup$
                          Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                          $endgroup$
                          – robjohn
                          Aug 7 '15 at 12:34






                          $begingroup$
                          Evaluating $n^{13}-n$ at $n=0$ gives $c_0$, the coefficient of $binom{n}{0}$. Evaluating $n^{13}-n-c_0binom{n}{0}$ at $n=1$ gives $c_1$, the coefficient of $binom{n}{1}$. Evaluating $n^{13}-n-c_0binom{n}{0}-c_1binom{n}{1}$ at $n=2$ gives $c_2$, the coefficient of $binom{n}{2}$. etc. Other than the large numbers, it is pretty simple.
                          $endgroup$
                          – robjohn
                          Aug 7 '15 at 12:34













                          4












                          $begingroup$

                          Notice that $n^{13}-n =n(n^{12}-1)=n(n^6+1)(n^6-1)=n(n^6+1)(n^3+1)(n^3-1)=...$






                          share|cite|improve this answer









                          $endgroup$


















                            4












                            $begingroup$

                            Notice that $n^{13}-n =n(n^{12}-1)=n(n^6+1)(n^6-1)=n(n^6+1)(n^3+1)(n^3-1)=...$






                            share|cite|improve this answer









                            $endgroup$
















                              4












                              4








                              4





                              $begingroup$

                              Notice that $n^{13}-n =n(n^{12}-1)=n(n^6+1)(n^6-1)=n(n^6+1)(n^3+1)(n^3-1)=...$






                              share|cite|improve this answer









                              $endgroup$



                              Notice that $n^{13}-n =n(n^{12}-1)=n(n^6+1)(n^6-1)=n(n^6+1)(n^3+1)(n^3-1)=...$







                              share|cite|improve this answer












                              share|cite|improve this answer



                              share|cite|improve this answer










                              answered Dec 6 '13 at 21:14









                              user99680user99680

                              5,972821




                              5,972821























                                  3












                                  $begingroup$

                                  Note that $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5 equiv n^{13} equiv n^6 cdot n^7 equiv n pmod 7.$$






                                  share|cite|improve this answer









                                  $endgroup$


















                                    3












                                    $begingroup$

                                    Note that $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5 equiv n^{13} equiv n^6 cdot n^7 equiv n pmod 7.$$






                                    share|cite|improve this answer









                                    $endgroup$
















                                      3












                                      3








                                      3





                                      $begingroup$

                                      Note that $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5 equiv n^{13} equiv n^6 cdot n^7 equiv n pmod 7.$$






                                      share|cite|improve this answer









                                      $endgroup$



                                      Note that $$n^{13} equiv n^5 cdot n^5 cdot n^3 equiv n cdot n cdot n^3 equiv n^5 equiv n pmod 5 equiv n^{13} equiv n^6 cdot n^7 equiv n pmod 7.$$







                                      share|cite|improve this answer












                                      share|cite|improve this answer



                                      share|cite|improve this answer










                                      answered Dec 6 '13 at 21:16









                                      Ahaan S. RungtaAhaan S. Rungta

                                      6,53352161




                                      6,53352161























                                          3












                                          $begingroup$

                                          $, n = 2730 = 2cdot 3cdot 5cdot 7cdot 13 = ,$ product of all primes $rm ,p,$ such that $rm color{#c00}{p!-!1mid 13!-!1}.,$ Now apply



                                          Theorem $ $ For natural numbers $rm:a,e,n:$ with $rm:e,n>1$



                                          $qquadrm n:|:a^{large e}-a:$ for all $rm:a:iff n:$ is squarefree, and prime $rm:p:|:n,Rightarrow, color{#c00}{p!-!1mid e!-!1}$



                                          Proof $ $ See this answer for a short simple proof.






                                          share|cite|improve this answer











                                          $endgroup$


















                                            3












                                            $begingroup$

                                            $, n = 2730 = 2cdot 3cdot 5cdot 7cdot 13 = ,$ product of all primes $rm ,p,$ such that $rm color{#c00}{p!-!1mid 13!-!1}.,$ Now apply



                                            Theorem $ $ For natural numbers $rm:a,e,n:$ with $rm:e,n>1$



                                            $qquadrm n:|:a^{large e}-a:$ for all $rm:a:iff n:$ is squarefree, and prime $rm:p:|:n,Rightarrow, color{#c00}{p!-!1mid e!-!1}$



                                            Proof $ $ See this answer for a short simple proof.






                                            share|cite|improve this answer











                                            $endgroup$
















                                              3












                                              3








                                              3





                                              $begingroup$

                                              $, n = 2730 = 2cdot 3cdot 5cdot 7cdot 13 = ,$ product of all primes $rm ,p,$ such that $rm color{#c00}{p!-!1mid 13!-!1}.,$ Now apply



                                              Theorem $ $ For natural numbers $rm:a,e,n:$ with $rm:e,n>1$



                                              $qquadrm n:|:a^{large e}-a:$ for all $rm:a:iff n:$ is squarefree, and prime $rm:p:|:n,Rightarrow, color{#c00}{p!-!1mid e!-!1}$



                                              Proof $ $ See this answer for a short simple proof.






                                              share|cite|improve this answer











                                              $endgroup$



                                              $, n = 2730 = 2cdot 3cdot 5cdot 7cdot 13 = ,$ product of all primes $rm ,p,$ such that $rm color{#c00}{p!-!1mid 13!-!1}.,$ Now apply



                                              Theorem $ $ For natural numbers $rm:a,e,n:$ with $rm:e,n>1$



                                              $qquadrm n:|:a^{large e}-a:$ for all $rm:a:iff n:$ is squarefree, and prime $rm:p:|:n,Rightarrow, color{#c00}{p!-!1mid e!-!1}$



                                              Proof $ $ See this answer for a short simple proof.







                                              share|cite|improve this answer














                                              share|cite|improve this answer



                                              share|cite|improve this answer








                                              edited Jan 28 at 23:01

























                                              answered Jul 5 '16 at 19:16









                                              Bill DubuqueBill Dubuque

                                              213k29196654




                                              213k29196654























                                                  2












                                                  $begingroup$

                                                  $2730 = 2cdot 3cdot 5cdot 7cdot 13$



                                                  The Carmichael function or least universal exponent function is composed by least common multiple over prime components, so $lambda(2730) = text{lcm}(lambda(2), lambda(3), lambda(5), lambda(7), lambda(13)) = text{lcm}(1,2,4,6,12)=12$. Note also that $2730$ is square-free, so the exponent cycle will be entered by the first power ($n^1$) for all numbers. Of course numbers coprime to $2730$ enter the cycle at the zeroth power ($1$).



                                                  Thus(!) $n^{(1+12)}equiv n^1 bmod 2730$ as required.






                                                  share|cite|improve this answer









                                                  $endgroup$


















                                                    2












                                                    $begingroup$

                                                    $2730 = 2cdot 3cdot 5cdot 7cdot 13$



                                                    The Carmichael function or least universal exponent function is composed by least common multiple over prime components, so $lambda(2730) = text{lcm}(lambda(2), lambda(3), lambda(5), lambda(7), lambda(13)) = text{lcm}(1,2,4,6,12)=12$. Note also that $2730$ is square-free, so the exponent cycle will be entered by the first power ($n^1$) for all numbers. Of course numbers coprime to $2730$ enter the cycle at the zeroth power ($1$).



                                                    Thus(!) $n^{(1+12)}equiv n^1 bmod 2730$ as required.






                                                    share|cite|improve this answer









                                                    $endgroup$
















                                                      2












                                                      2








                                                      2





                                                      $begingroup$

                                                      $2730 = 2cdot 3cdot 5cdot 7cdot 13$



                                                      The Carmichael function or least universal exponent function is composed by least common multiple over prime components, so $lambda(2730) = text{lcm}(lambda(2), lambda(3), lambda(5), lambda(7), lambda(13)) = text{lcm}(1,2,4,6,12)=12$. Note also that $2730$ is square-free, so the exponent cycle will be entered by the first power ($n^1$) for all numbers. Of course numbers coprime to $2730$ enter the cycle at the zeroth power ($1$).



                                                      Thus(!) $n^{(1+12)}equiv n^1 bmod 2730$ as required.






                                                      share|cite|improve this answer









                                                      $endgroup$



                                                      $2730 = 2cdot 3cdot 5cdot 7cdot 13$



                                                      The Carmichael function or least universal exponent function is composed by least common multiple over prime components, so $lambda(2730) = text{lcm}(lambda(2), lambda(3), lambda(5), lambda(7), lambda(13)) = text{lcm}(1,2,4,6,12)=12$. Note also that $2730$ is square-free, so the exponent cycle will be entered by the first power ($n^1$) for all numbers. Of course numbers coprime to $2730$ enter the cycle at the zeroth power ($1$).



                                                      Thus(!) $n^{(1+12)}equiv n^1 bmod 2730$ as required.







                                                      share|cite|improve this answer












                                                      share|cite|improve this answer



                                                      share|cite|improve this answer










                                                      answered Dec 21 '17 at 19:55









                                                      JoffanJoffan

                                                      32.6k43269




                                                      32.6k43269























                                                          1












                                                          $begingroup$

                                                          Cute corollary to FLT.



                                                          If $p,q $ are primes and $p-1=m|q-1=k$ then



                                                          $p|n^p -n=n (n^m-1)|n (n^m-1)(n^{k-m} + n^{k - 2m}+...+n^m+1)=n (n^k-1)=n^q-n $.



                                                          So as $1,2,3,4,6,12$ all divide $12$, it follows $2,3,5,7,13$ all divide $n^{13}- n $.



                                                          For me personally it was hardest to see that 5 did but $n^{13}-n = (n^8 + n^4 + 1)(n^5- n) $ so ... it does.






                                                          share|cite|improve this answer











                                                          $endgroup$


















                                                            1












                                                            $begingroup$

                                                            Cute corollary to FLT.



                                                            If $p,q $ are primes and $p-1=m|q-1=k$ then



                                                            $p|n^p -n=n (n^m-1)|n (n^m-1)(n^{k-m} + n^{k - 2m}+...+n^m+1)=n (n^k-1)=n^q-n $.



                                                            So as $1,2,3,4,6,12$ all divide $12$, it follows $2,3,5,7,13$ all divide $n^{13}- n $.



                                                            For me personally it was hardest to see that 5 did but $n^{13}-n = (n^8 + n^4 + 1)(n^5- n) $ so ... it does.






                                                            share|cite|improve this answer











                                                            $endgroup$
















                                                              1












                                                              1








                                                              1





                                                              $begingroup$

                                                              Cute corollary to FLT.



                                                              If $p,q $ are primes and $p-1=m|q-1=k$ then



                                                              $p|n^p -n=n (n^m-1)|n (n^m-1)(n^{k-m} + n^{k - 2m}+...+n^m+1)=n (n^k-1)=n^q-n $.



                                                              So as $1,2,3,4,6,12$ all divide $12$, it follows $2,3,5,7,13$ all divide $n^{13}- n $.



                                                              For me personally it was hardest to see that 5 did but $n^{13}-n = (n^8 + n^4 + 1)(n^5- n) $ so ... it does.






                                                              share|cite|improve this answer











                                                              $endgroup$



                                                              Cute corollary to FLT.



                                                              If $p,q $ are primes and $p-1=m|q-1=k$ then



                                                              $p|n^p -n=n (n^m-1)|n (n^m-1)(n^{k-m} + n^{k - 2m}+...+n^m+1)=n (n^k-1)=n^q-n $.



                                                              So as $1,2,3,4,6,12$ all divide $12$, it follows $2,3,5,7,13$ all divide $n^{13}- n $.



                                                              For me personally it was hardest to see that 5 did but $n^{13}-n = (n^8 + n^4 + 1)(n^5- n) $ so ... it does.







                                                              share|cite|improve this answer














                                                              share|cite|improve this answer



                                                              share|cite|improve this answer








                                                              edited Jul 5 '16 at 21:37

























                                                              answered Jul 5 '16 at 19:53









                                                              fleabloodfleablood

                                                              73.6k22891




                                                              73.6k22891























                                                                  0












                                                                  $begingroup$

                                                                  You can find the Chinese remainder theorem very useful.






                                                                  share|cite|improve this answer









                                                                  $endgroup$


















                                                                    0












                                                                    $begingroup$

                                                                    You can find the Chinese remainder theorem very useful.






                                                                    share|cite|improve this answer









                                                                    $endgroup$
















                                                                      0












                                                                      0








                                                                      0





                                                                      $begingroup$

                                                                      You can find the Chinese remainder theorem very useful.






                                                                      share|cite|improve this answer









                                                                      $endgroup$



                                                                      You can find the Chinese remainder theorem very useful.







                                                                      share|cite|improve this answer












                                                                      share|cite|improve this answer



                                                                      share|cite|improve this answer










                                                                      answered Dec 6 '13 at 21:15









                                                                      randuserranduser

                                                                      42838




                                                                      42838























                                                                          0












                                                                          $begingroup$

                                                                          Here is some way of automating Rob John's method:



                                                                          You can always use decomposition over polynomials :$quaddisplaystyle Pi_k(n)=k!binom nk=prodlimits_{i=0}^{k-1} (n-i)$



                                                                          e.g. $ Pi_4(n)=(n-3)(n-2)(n-1)n$




                                                                          To solve problems of the type: "show $m$ divides the polynomial $P(n)$"




                                                                          Let have a look at a simpler example using this technique :



                                                                          Prove $(n^5-n)$ is divisible by 5 by induction.



                                                                          Though for $n^{13}-n$ it is a bit tedious.



                                                                          Here is a maple procedure to do it:



                                                                          > binomexpansion :=proc(P)
                                                                          local a,b,c,d,i,p,q:
                                                                          p:=P: d:= degree(P):
                                                                          printf("%a = ",P):
                                                                          for i from d to 0 by -1 do
                                                                          a:=coeff(p,n,i):
                                                                          q:=expand(binomial(n,i)):
                                                                          b:=coeff(q,n,i):
                                                                          c:=a/b:
                                                                          p:=p-c*q:
                                                                          if((c>0)and(i<d)) then printf("+"); fi:
                                                                          if(c<>0) then printf("%d(n,%d)",c,i); fi:
                                                                          end do: printf("n"):
                                                                          end proc

                                                                          > binomexpansion(n^13-n);

                                                                          n^13-n = 6227020800(n,13)+37362124800(n,12)+97037740800(n,11)+142702560000(n,10)+
                                                                          130456085760(n,9)+76592355840(n,8)+28805736960(n,7)+6711344640(n,6)+
                                                                          901020120(n,5)+60780720(n,4)+1569750(n,3)+8190(n,2)


                                                                          You can notice that all coefficients are divisible by $2730=2.3.5.7.13$.



                                                                          And since the binomial coefficients are integers, you get the divisibility by $2730$ as a result.






                                                                          share|cite|improve this answer









                                                                          $endgroup$


















                                                                            0












                                                                            $begingroup$

                                                                            Here is some way of automating Rob John's method:



                                                                            You can always use decomposition over polynomials :$quaddisplaystyle Pi_k(n)=k!binom nk=prodlimits_{i=0}^{k-1} (n-i)$



                                                                            e.g. $ Pi_4(n)=(n-3)(n-2)(n-1)n$




                                                                            To solve problems of the type: "show $m$ divides the polynomial $P(n)$"




                                                                            Let have a look at a simpler example using this technique :



                                                                            Prove $(n^5-n)$ is divisible by 5 by induction.



                                                                            Though for $n^{13}-n$ it is a bit tedious.



                                                                            Here is a maple procedure to do it:



                                                                            > binomexpansion :=proc(P)
                                                                            local a,b,c,d,i,p,q:
                                                                            p:=P: d:= degree(P):
                                                                            printf("%a = ",P):
                                                                            for i from d to 0 by -1 do
                                                                            a:=coeff(p,n,i):
                                                                            q:=expand(binomial(n,i)):
                                                                            b:=coeff(q,n,i):
                                                                            c:=a/b:
                                                                            p:=p-c*q:
                                                                            if((c>0)and(i<d)) then printf("+"); fi:
                                                                            if(c<>0) then printf("%d(n,%d)",c,i); fi:
                                                                            end do: printf("n"):
                                                                            end proc

                                                                            > binomexpansion(n^13-n);

                                                                            n^13-n = 6227020800(n,13)+37362124800(n,12)+97037740800(n,11)+142702560000(n,10)+
                                                                            130456085760(n,9)+76592355840(n,8)+28805736960(n,7)+6711344640(n,6)+
                                                                            901020120(n,5)+60780720(n,4)+1569750(n,3)+8190(n,2)


                                                                            You can notice that all coefficients are divisible by $2730=2.3.5.7.13$.



                                                                            And since the binomial coefficients are integers, you get the divisibility by $2730$ as a result.






                                                                            share|cite|improve this answer









                                                                            $endgroup$
















                                                                              0












                                                                              0








                                                                              0





                                                                              $begingroup$

                                                                              Here is some way of automating Rob John's method:



                                                                              You can always use decomposition over polynomials :$quaddisplaystyle Pi_k(n)=k!binom nk=prodlimits_{i=0}^{k-1} (n-i)$



                                                                              e.g. $ Pi_4(n)=(n-3)(n-2)(n-1)n$




                                                                              To solve problems of the type: "show $m$ divides the polynomial $P(n)$"




                                                                              Let have a look at a simpler example using this technique :



                                                                              Prove $(n^5-n)$ is divisible by 5 by induction.



                                                                              Though for $n^{13}-n$ it is a bit tedious.



                                                                              Here is a maple procedure to do it:



                                                                              > binomexpansion :=proc(P)
                                                                              local a,b,c,d,i,p,q:
                                                                              p:=P: d:= degree(P):
                                                                              printf("%a = ",P):
                                                                              for i from d to 0 by -1 do
                                                                              a:=coeff(p,n,i):
                                                                              q:=expand(binomial(n,i)):
                                                                              b:=coeff(q,n,i):
                                                                              c:=a/b:
                                                                              p:=p-c*q:
                                                                              if((c>0)and(i<d)) then printf("+"); fi:
                                                                              if(c<>0) then printf("%d(n,%d)",c,i); fi:
                                                                              end do: printf("n"):
                                                                              end proc

                                                                              > binomexpansion(n^13-n);

                                                                              n^13-n = 6227020800(n,13)+37362124800(n,12)+97037740800(n,11)+142702560000(n,10)+
                                                                              130456085760(n,9)+76592355840(n,8)+28805736960(n,7)+6711344640(n,6)+
                                                                              901020120(n,5)+60780720(n,4)+1569750(n,3)+8190(n,2)


                                                                              You can notice that all coefficients are divisible by $2730=2.3.5.7.13$.



                                                                              And since the binomial coefficients are integers, you get the divisibility by $2730$ as a result.






                                                                              share|cite|improve this answer









                                                                              $endgroup$



                                                                              Here is some way of automating Rob John's method:



                                                                              You can always use decomposition over polynomials :$quaddisplaystyle Pi_k(n)=k!binom nk=prodlimits_{i=0}^{k-1} (n-i)$



                                                                              e.g. $ Pi_4(n)=(n-3)(n-2)(n-1)n$




                                                                              To solve problems of the type: "show $m$ divides the polynomial $P(n)$"




                                                                              Let have a look at a simpler example using this technique :



                                                                              Prove $(n^5-n)$ is divisible by 5 by induction.



                                                                              Though for $n^{13}-n$ it is a bit tedious.



                                                                              Here is a maple procedure to do it:



                                                                              > binomexpansion :=proc(P)
                                                                              local a,b,c,d,i,p,q:
                                                                              p:=P: d:= degree(P):
                                                                              printf("%a = ",P):
                                                                              for i from d to 0 by -1 do
                                                                              a:=coeff(p,n,i):
                                                                              q:=expand(binomial(n,i)):
                                                                              b:=coeff(q,n,i):
                                                                              c:=a/b:
                                                                              p:=p-c*q:
                                                                              if((c>0)and(i<d)) then printf("+"); fi:
                                                                              if(c<>0) then printf("%d(n,%d)",c,i); fi:
                                                                              end do: printf("n"):
                                                                              end proc

                                                                              > binomexpansion(n^13-n);

                                                                              n^13-n = 6227020800(n,13)+37362124800(n,12)+97037740800(n,11)+142702560000(n,10)+
                                                                              130456085760(n,9)+76592355840(n,8)+28805736960(n,7)+6711344640(n,6)+
                                                                              901020120(n,5)+60780720(n,4)+1569750(n,3)+8190(n,2)


                                                                              You can notice that all coefficients are divisible by $2730=2.3.5.7.13$.



                                                                              And since the binomial coefficients are integers, you get the divisibility by $2730$ as a result.







                                                                              share|cite|improve this answer












                                                                              share|cite|improve this answer



                                                                              share|cite|improve this answer










                                                                              answered Feb 27 at 20:46









                                                                              zwimzwim

                                                                              12.6k831




                                                                              12.6k831






























                                                                                  draft saved

                                                                                  draft discarded




















































                                                                                  Thanks for contributing an answer to Mathematics Stack Exchange!


                                                                                  • Please be sure to answer the question. Provide details and share your research!

                                                                                  But avoid



                                                                                  • Asking for help, clarification, or responding to other answers.

                                                                                  • Making statements based on opinion; back them up with references or personal experience.


                                                                                  Use MathJax to format equations. MathJax reference.


                                                                                  To learn more, see our tips on writing great answers.




                                                                                  draft saved


                                                                                  draft discarded














                                                                                  StackExchange.ready(
                                                                                  function () {
                                                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f596074%2fhow-to-show-that-2730-mid-n13-n-forall-n-in-mathbbn%23new-answer', 'question_page');
                                                                                  }
                                                                                  );

                                                                                  Post as a guest















                                                                                  Required, but never shown





















































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown

































                                                                                  Required, but never shown














                                                                                  Required, but never shown












                                                                                  Required, but never shown







                                                                                  Required, but never shown







                                                                                  Popular posts from this blog

                                                                                  MongoDB - Not Authorized To Execute Command

                                                                                  in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

                                                                                  How to fix TextFormField cause rebuild widget in Flutter