If $A$ be a matrix with $n$ distinct eigenvalues then $u, Au , A^2u ,cdots, A^{n-1} u$ will be independent.












1












$begingroup$



If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.




Can anyone give me a hint to solve this problem?



I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..










share|cite|improve this question











$endgroup$












  • $begingroup$
    See here: math.stackexchange.com/questions/2627894/…
    $endgroup$
    – Math1000
    Jan 27 at 1:20






  • 2




    $begingroup$
    This is certainly not true for any $u$, just pick an eigenvector...
    $endgroup$
    – Klaus
    Jan 27 at 1:21
















1












$begingroup$



If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.




Can anyone give me a hint to solve this problem?



I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..










share|cite|improve this question











$endgroup$












  • $begingroup$
    See here: math.stackexchange.com/questions/2627894/…
    $endgroup$
    – Math1000
    Jan 27 at 1:20






  • 2




    $begingroup$
    This is certainly not true for any $u$, just pick an eigenvector...
    $endgroup$
    – Klaus
    Jan 27 at 1:21














1












1








1


1



$begingroup$



If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.




Can anyone give me a hint to solve this problem?



I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..










share|cite|improve this question











$endgroup$





If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.




Can anyone give me a hint to solve this problem?



I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..







linear-algebra vector-spaces eigenvalues-eigenvectors






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 27 at 1:57







cmi

















asked Jan 27 at 1:18









cmicmi

1,136312




1,136312












  • $begingroup$
    See here: math.stackexchange.com/questions/2627894/…
    $endgroup$
    – Math1000
    Jan 27 at 1:20






  • 2




    $begingroup$
    This is certainly not true for any $u$, just pick an eigenvector...
    $endgroup$
    – Klaus
    Jan 27 at 1:21


















  • $begingroup$
    See here: math.stackexchange.com/questions/2627894/…
    $endgroup$
    – Math1000
    Jan 27 at 1:20






  • 2




    $begingroup$
    This is certainly not true for any $u$, just pick an eigenvector...
    $endgroup$
    – Klaus
    Jan 27 at 1:21
















$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20




$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20




2




2




$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21




$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21










1 Answer
1






active

oldest

votes


















3












$begingroup$

Hint:



You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent



Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!





Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$





Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$



$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$



$$vdots$$



$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$



Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,



$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$



The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$



since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$



The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:31








  • 1




    $begingroup$
    @cmi: Just Hold on.....I'm typing.....!
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 6:39










  • $begingroup$
    I got it on my own...You may not type any more...@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:49










  • $begingroup$
    $B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 7:04










  • $begingroup$
    @cmi: Anyway, see my edit !
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 7:06













Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089015%2fif-a-be-a-matrix-with-n-distinct-eigenvalues-then-u-au-a2u-cdots-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

Hint:



You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent



Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!





Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$





Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$



$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$



$$vdots$$



$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$



Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,



$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$



The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$



since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$



The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:31








  • 1




    $begingroup$
    @cmi: Just Hold on.....I'm typing.....!
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 6:39










  • $begingroup$
    I got it on my own...You may not type any more...@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:49










  • $begingroup$
    $B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 7:04










  • $begingroup$
    @cmi: Anyway, see my edit !
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 7:06


















3












$begingroup$

Hint:



You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent



Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!





Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$





Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$



$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$



$$vdots$$



$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$



Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,



$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$



The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$



since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$



The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?






share|cite|improve this answer











$endgroup$













  • $begingroup$
    I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:31








  • 1




    $begingroup$
    @cmi: Just Hold on.....I'm typing.....!
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 6:39










  • $begingroup$
    I got it on my own...You may not type any more...@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:49










  • $begingroup$
    $B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 7:04










  • $begingroup$
    @cmi: Anyway, see my edit !
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 7:06
















3












3








3





$begingroup$

Hint:



You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent



Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!





Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$





Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$



$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$



$$vdots$$



$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$



Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,



$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$



The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$



since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$



The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?






share|cite|improve this answer











$endgroup$



Hint:



You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent



Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!





Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$





Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$



$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$



$$vdots$$



$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$



Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,



$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$



The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$



since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$



The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 29 at 7:05

























answered Jan 27 at 1:28









Chinnapparaj RChinnapparaj R

5,8082928




5,8082928












  • $begingroup$
    I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:31








  • 1




    $begingroup$
    @cmi: Just Hold on.....I'm typing.....!
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 6:39










  • $begingroup$
    I got it on my own...You may not type any more...@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:49










  • $begingroup$
    $B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 7:04










  • $begingroup$
    @cmi: Anyway, see my edit !
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 7:06




















  • $begingroup$
    I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:31








  • 1




    $begingroup$
    @cmi: Just Hold on.....I'm typing.....!
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 6:39










  • $begingroup$
    I got it on my own...You may not type any more...@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 6:49










  • $begingroup$
    $B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
    $endgroup$
    – cmi
    Jan 29 at 7:04










  • $begingroup$
    @cmi: Anyway, see my edit !
    $endgroup$
    – Chinnapparaj R
    Jan 29 at 7:06


















$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31






$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31






1




1




$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39




$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39












$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49




$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49












$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04




$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04












$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06






$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089015%2fif-a-be-a-matrix-with-n-distinct-eigenvalues-then-u-au-a2u-cdots-a%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter