If $A$ be a matrix with $n$ distinct eigenvalues then $u, Au , A^2u ,cdots, A^{n-1} u$ will be independent.
$begingroup$
If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.
Can anyone give me a hint to solve this problem?
I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..
linear-algebra vector-spaces eigenvalues-eigenvectors
$endgroup$
add a comment |
$begingroup$
If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.
Can anyone give me a hint to solve this problem?
I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..
linear-algebra vector-spaces eigenvalues-eigenvectors
$endgroup$
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
2
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21
add a comment |
$begingroup$
If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.
Can anyone give me a hint to solve this problem?
I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..
linear-algebra vector-spaces eigenvalues-eigenvectors
$endgroup$
If $A$ be a matrix with $n$ distinct eigenvalues then there exists a vector $u$ such that $u,Au,A^2u,cdots, A^{n-1} u$ will be independent.
Can anyone give me a hint to solve this problem?
I know that if $A$ has $n$ distinct eigen values then it will have $n$ independent eigen vectors..
linear-algebra vector-spaces eigenvalues-eigenvectors
linear-algebra vector-spaces eigenvalues-eigenvectors
edited Jan 27 at 1:57
cmi
asked Jan 27 at 1:18
cmicmi
1,136312
1,136312
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
2
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21
add a comment |
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
2
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
2
2
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Hint:
You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent
Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!
Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$
Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$
$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$
$$vdots$$
$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$
Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,
$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$
The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$
since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$
The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?
$endgroup$
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089015%2fif-a-be-a-matrix-with-n-distinct-eigenvalues-then-u-au-a2u-cdots-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint:
You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent
Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!
Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$
Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$
$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$
$$vdots$$
$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$
Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,
$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$
The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$
since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$
The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?
$endgroup$
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
add a comment |
$begingroup$
Hint:
You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent
Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!
Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$
Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$
$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$
$$vdots$$
$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$
Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,
$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$
The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$
since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$
The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?
$endgroup$
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
add a comment |
$begingroup$
Hint:
You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent
Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!
Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$
Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$
$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$
$$vdots$$
$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$
Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,
$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$
The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$
since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$
The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?
$endgroup$
Hint:
You must prove there exists $u$ such that $u,Au,A^2u,cdots,A^{n-1}u$ is linearly independent
Take $u=u_1+u_2+cdots+u_n$ where $u_i$'s are eigenvectors corresponding to the distinct $n$ eigenvalues and then show this $u$ works!
Added: Start with $$a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$$
and substitute $u$ to expand this and do some calculations to end with $Bx=0$ where $B$ is a Vandermonde matrix with distinct entries and $x=(a_0,a_1,...,a_{n-1})^t$ and then conclude $x=B^{-1}0=0$
Edit: Now $$Au=Au_1+Au_2+cdots+Au_n=lambda_1u_1+lambda_2u_2+cdots+lambda_nu_n$$
$$A^2u=lambda_1^2u_1+lambda_2^2u_2+cdots+lambda_n^2u_n$$
$$vdots$$
$$A^{n-1}u=lambda_1^{n-1}u_1+lambda_2^{n-1}u_2+cdots+lambda_n^{n-1}u_n$$
Suppose $a_0u+a_1Au+cdots+a_{n-1}A^{n-1}u=0$. That is,
$a_0(u_1+cdots+u_n)+a_1(lambda_1u_1+cdots+lambda_nu_n)+cdots+a_{n-1}(lambda_1^{n-1}u_1+cdots+lambda_n^{n-1}u_n)=0$
The above can be re written as $$(a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1})u_1$$ $$+(a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-2})u_2$$ $$+cdots+(a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1})u_n=0$$
since ${u_i}$ are linearly independent(How?), $$a_0+a_1lambda_1+cdots+a_{n-1}lambda_1^{n-1}=0$$ $$a_0+a_1lambda_2+cdots+a_{n-1}lambda_2^{n-1}=0$$ $$vdots$$ $$a_0+a_1lambda_n+cdots+a_{n-1}lambda_n^{n-1}=0$$
The above can be written as $$begin{pmatrix} 1& lambda_1 &lambda_1^2& cdots&lambda_1^{n-1}\ 1& lambda_2 &lambda_2^2& cdots&lambda_2^{n-1} \ vdots\ 1& lambda_n &lambda_n^2& cdots&lambda_n^{n-1} end{pmatrix} begin{pmatrix} a_0\a_1\vdots\a_{n-1}end{pmatrix}=begin{pmatrix} 0\0\vdots\0end{pmatrix}$$ Since the coefficient matrix is Vandermonde, and $lambda_i$'s are distinct, so its determinant is non zero, so......?
edited Jan 29 at 7:05
answered Jan 27 at 1:28


Chinnapparaj RChinnapparaj R
5,8082928
5,8082928
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
add a comment |
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
$begingroup$
I did not get how to get a vandermonde Matrix $B$? Can you show the calculation?@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:31
1
1
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
@cmi: Just Hold on.....I'm typing.....!
$endgroup$
– Chinnapparaj R
Jan 29 at 6:39
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
I got it on my own...You may not type any more...@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 6:49
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
$B$ seems to be the sum of n Vandermonde Matrices..@Chinnapparaj R
$endgroup$
– cmi
Jan 29 at 7:04
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
$begingroup$
@cmi: Anyway, see my edit !
$endgroup$
– Chinnapparaj R
Jan 29 at 7:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3089015%2fif-a-be-a-matrix-with-n-distinct-eigenvalues-then-u-au-a2u-cdots-a%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
See here: math.stackexchange.com/questions/2627894/…
$endgroup$
– Math1000
Jan 27 at 1:20
2
$begingroup$
This is certainly not true for any $u$, just pick an eigenvector...
$endgroup$
– Klaus
Jan 27 at 1:21