Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$.
$begingroup$
Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.
My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that
$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$
So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that
$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$
Is my proof right?
For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!
real-analysis calculus general-topology functional-analysis analysis
$endgroup$
|
show 1 more comment
$begingroup$
Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.
My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that
$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$
So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that
$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$
Is my proof right?
For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!
real-analysis calculus general-topology functional-analysis analysis
$endgroup$
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58
|
show 1 more comment
$begingroup$
Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.
My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that
$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$
So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that
$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$
Is my proof right?
For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!
real-analysis calculus general-topology functional-analysis analysis
$endgroup$
Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.
My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that
$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$
So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that
$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$
Is my proof right?
For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!
real-analysis calculus general-topology functional-analysis analysis
real-analysis calculus general-topology functional-analysis analysis
edited Feb 6 at 2:54


d.k.o.
10.5k630
10.5k630
asked Jan 29 at 1:53
CosCos
24028
24028
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58
|
show 1 more comment
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58
|
show 1 more comment
1 Answer
1
active
oldest
votes
$begingroup$
$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.
$endgroup$
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091638%2flet-0-alpha-beta-leq-1-prove-lip-betaa-b-subset-lip-alphaa-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.
$endgroup$
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
add a comment |
$begingroup$
$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.
$endgroup$
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
add a comment |
$begingroup$
$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.
$endgroup$
$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.
edited Feb 6 at 6:00
answered Feb 6 at 2:06


d.k.o.d.k.o.
10.5k630
10.5k630
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
add a comment |
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091638%2flet-0-alpha-beta-leq-1-prove-lip-betaa-b-subset-lip-alphaa-b%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59
$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00
$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02
$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40
$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58