Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$.












0












$begingroup$


Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.



My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that



$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$



So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that



$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$



Is my proof right?



For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    $$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
    $endgroup$
    – d.k.o.
    Jan 29 at 2:59










  • $begingroup$
    What is your definition of $Lip_alpha[a,b]$?
    $endgroup$
    – d.k.o.
    Jan 29 at 3:00












  • $begingroup$
    $f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
    $endgroup$
    – Cos
    Jan 29 at 3:02










  • $begingroup$
    @d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
    $endgroup$
    – Cos
    Feb 6 at 1:40












  • $begingroup$
    Yes, and this supremum can be computed.
    $endgroup$
    – d.k.o.
    Feb 6 at 1:58
















0












$begingroup$


Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.



My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that



$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$



So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that



$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$



Is my proof right?



For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!










share|cite|improve this question











$endgroup$












  • $begingroup$
    $$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
    $endgroup$
    – d.k.o.
    Jan 29 at 2:59










  • $begingroup$
    What is your definition of $Lip_alpha[a,b]$?
    $endgroup$
    – d.k.o.
    Jan 29 at 3:00












  • $begingroup$
    $f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
    $endgroup$
    – Cos
    Jan 29 at 3:02










  • $begingroup$
    @d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
    $endgroup$
    – Cos
    Feb 6 at 1:40












  • $begingroup$
    Yes, and this supremum can be computed.
    $endgroup$
    – d.k.o.
    Feb 6 at 1:58














0












0








0





$begingroup$


Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.



My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that



$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$



So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that



$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$



Is my proof right?



For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!










share|cite|improve this question











$endgroup$




Let $0< alpha < beta leq 1$. Prove $Lip_{beta}[a,b] subset Lip_{alpha}[a,b]$. Also, I want to know if $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$.



My attemp of proof goes as follow, let $f in Lip_{beta}[a,b]$, then for every $x,y in [a,b]$ I got that there is a $M>0$ such $|f(x)-f(y)| leq M|x-y|^{beta}$. As someone point me below in the comments, I have that



$$|f(x)-f(y)| leq M|x-y|^{beta}=M|x-y|^{beta-alpha}|x-y|^{alpha}.$$



So I think the $M' > 0$ im looking for is $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$, this way for every $x,y in [a,b]$ there is an $M>0$ such that



$$|f(x)-f(y)|leq M|x-y|^{beta}=M|x-y|^{beta- alpha }|x-y|^{alpha} leq sup lbrace M|x-y|^{beta- alpha} rbrace=M'|x-y|^{alpha}.$$



Is my proof right?



For $Lip_beta[a,b]$ is a closed subset for $Lip_{alpha}[a,b]$ I was thinking in using the equivalence of a closed subset as a subset which contains all its limit points. Then how do I proof this subset contains all its limit point, Im working here with the supremum norm of the space of continuous functions. Thank you!







real-analysis calculus general-topology functional-analysis analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Feb 6 at 2:54









d.k.o.

10.5k630




10.5k630










asked Jan 29 at 1:53









CosCos

24028




24028












  • $begingroup$
    $$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
    $endgroup$
    – d.k.o.
    Jan 29 at 2:59










  • $begingroup$
    What is your definition of $Lip_alpha[a,b]$?
    $endgroup$
    – d.k.o.
    Jan 29 at 3:00












  • $begingroup$
    $f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
    $endgroup$
    – Cos
    Jan 29 at 3:02










  • $begingroup$
    @d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
    $endgroup$
    – Cos
    Feb 6 at 1:40












  • $begingroup$
    Yes, and this supremum can be computed.
    $endgroup$
    – d.k.o.
    Feb 6 at 1:58


















  • $begingroup$
    $$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
    $endgroup$
    – d.k.o.
    Jan 29 at 2:59










  • $begingroup$
    What is your definition of $Lip_alpha[a,b]$?
    $endgroup$
    – d.k.o.
    Jan 29 at 3:00












  • $begingroup$
    $f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
    $endgroup$
    – Cos
    Jan 29 at 3:02










  • $begingroup$
    @d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
    $endgroup$
    – Cos
    Feb 6 at 1:40












  • $begingroup$
    Yes, and this supremum can be computed.
    $endgroup$
    – d.k.o.
    Feb 6 at 1:58
















$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59




$begingroup$
$$ M|x-y|^{beta}= M|x-y|^{alpha}|x-y|^{beta-alpha}le M'|x-y|^{alpha}. $$
$endgroup$
– d.k.o.
Jan 29 at 2:59












$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00






$begingroup$
What is your definition of $Lip_alpha[a,b]$?
$endgroup$
– d.k.o.
Jan 29 at 3:00














$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02




$begingroup$
$f in Lip_{alpha}[a,b]$ if for every $x,y in [a,b]$, $|f(x)-f(y)| leq M|x-y|^{alpha}$ for some $M>0$. @d.k.o.
$endgroup$
– Cos
Jan 29 at 3:02












$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40






$begingroup$
@d.k.o. I like how your idea seems, but I think the $M'$ you give me at your hint doesnt work. I think I should take $M'=sup lbrace M|x-y|^{beta-alpha} rbrace$ isnt?
$endgroup$
– Cos
Feb 6 at 1:40














$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58




$begingroup$
Yes, and this supremum can be computed.
$endgroup$
– d.k.o.
Feb 6 at 1:58










1 Answer
1






active

oldest

votes


















1












$begingroup$

$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
    $endgroup$
    – Cos
    Mar 2 at 21:52












  • $begingroup$
    @Cos $avee bequiv max{a,b}$.
    $endgroup$
    – d.k.o.
    Mar 2 at 22:30












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091638%2flet-0-alpha-beta-leq-1-prove-lip-betaa-b-subset-lip-alphaa-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









1












$begingroup$

$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
    $endgroup$
    – Cos
    Mar 2 at 21:52












  • $begingroup$
    @Cos $avee bequiv max{a,b}$.
    $endgroup$
    – d.k.o.
    Mar 2 at 22:30
















1












$begingroup$

$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
    $endgroup$
    – Cos
    Mar 2 at 21:52












  • $begingroup$
    @Cos $avee bequiv max{a,b}$.
    $endgroup$
    – d.k.o.
    Mar 2 at 22:30














1












1








1





$begingroup$

$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.






share|cite|improve this answer











$endgroup$



$operatorname{Lip}_{beta}[a,b]$ is not closed in $operatorname{Lip}_{alpha}[a,b]$ under the sup norm. Take $a=0$, $b=1$, $alpha=1/2$, and $beta=1$. Consider $f(x)=sqrt{x}$, which is 1/2-Hölder continuous and let $f_n=n^{-1}vee f$. Then each $f_n$ is Lipschitz and $|f_n-f|_{infty}=n^{-1}to 0$ as $ntoinfty$. However, $fnotin operatorname{Lip}_1[0,1]$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Feb 6 at 6:00

























answered Feb 6 at 2:06









d.k.o.d.k.o.

10.5k630




10.5k630












  • $begingroup$
    Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
    $endgroup$
    – Cos
    Mar 2 at 21:52












  • $begingroup$
    @Cos $avee bequiv max{a,b}$.
    $endgroup$
    – d.k.o.
    Mar 2 at 22:30


















  • $begingroup$
    Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
    $endgroup$
    – Cos
    Mar 2 at 21:52












  • $begingroup$
    @Cos $avee bequiv max{a,b}$.
    $endgroup$
    – d.k.o.
    Mar 2 at 22:30
















$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52






$begingroup$
Hi @d.k.o . What does $f_{n}=n^{-1} V f $ means? :/
$endgroup$
– Cos
Mar 2 at 21:52














$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30




$begingroup$
@Cos $avee bequiv max{a,b}$.
$endgroup$
– d.k.o.
Mar 2 at 22:30


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091638%2flet-0-alpha-beta-leq-1-prove-lip-betaa-b-subset-lip-alphaa-b%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith

How to fix TextFormField cause rebuild widget in Flutter