Limit: $2^{frac{(-1)^n - n}{n}}$as $n rightarrow infty$












1












$begingroup$


How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?



I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?










share|cite|improve this question











$endgroup$

















    1












    $begingroup$


    How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?



    I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?










    share|cite|improve this question











    $endgroup$















      1












      1








      1





      $begingroup$


      How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?



      I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?










      share|cite|improve this question











      $endgroup$




      How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?



      I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?







      calculus sequences-and-series






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Jan 29 at 0:56









      Key Flex

      8,56761233




      8,56761233










      asked Jan 29 at 0:20









      hopefullyhopefully

      277214




      277214






















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
          One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Why the down vote?
            $endgroup$
            – Chris Leary
            Jan 29 at 0:24



















          1












          $begingroup$

          Start by pulling the expression apart:
          $$
          2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
          $$

          Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
          $$2^{frac{(-1)^n}{n}} 2^{frac1n}
          $$

          So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
          $$
          frac12 cdot 1 = frac12
          $$






          share|cite|improve this answer











          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091584%2flimit-2-frac-1n-nnas-n-rightarrow-infty%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
            One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Why the down vote?
              $endgroup$
              – Chris Leary
              Jan 29 at 0:24
















            4












            $begingroup$

            Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
            One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.






            share|cite|improve this answer











            $endgroup$













            • $begingroup$
              Why the down vote?
              $endgroup$
              – Chris Leary
              Jan 29 at 0:24














            4












            4








            4





            $begingroup$

            Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
            One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.






            share|cite|improve this answer











            $endgroup$



            Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
            One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited Jan 29 at 0:36

























            answered Jan 29 at 0:21









            GibbsGibbs

            5,4483927




            5,4483927












            • $begingroup$
              Why the down vote?
              $endgroup$
              – Chris Leary
              Jan 29 at 0:24


















            • $begingroup$
              Why the down vote?
              $endgroup$
              – Chris Leary
              Jan 29 at 0:24
















            $begingroup$
            Why the down vote?
            $endgroup$
            – Chris Leary
            Jan 29 at 0:24




            $begingroup$
            Why the down vote?
            $endgroup$
            – Chris Leary
            Jan 29 at 0:24











            1












            $begingroup$

            Start by pulling the expression apart:
            $$
            2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
            $$

            Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
            $$2^{frac{(-1)^n}{n}} 2^{frac1n}
            $$

            So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
            $$
            frac12 cdot 1 = frac12
            $$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Start by pulling the expression apart:
              $$
              2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
              $$

              Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
              $$2^{frac{(-1)^n}{n}} 2^{frac1n}
              $$

              So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
              $$
              frac12 cdot 1 = frac12
              $$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Start by pulling the expression apart:
                $$
                2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
                $$

                Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
                $$2^{frac{(-1)^n}{n}} 2^{frac1n}
                $$

                So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
                $$
                frac12 cdot 1 = frac12
                $$






                share|cite|improve this answer











                $endgroup$



                Start by pulling the expression apart:
                $$
                2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
                $$

                Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
                $$2^{frac{(-1)^n}{n}} 2^{frac1n}
                $$

                So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
                $$
                frac12 cdot 1 = frac12
                $$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Jan 29 at 0:41









                Key Flex

                8,56761233




                8,56761233










                answered Jan 29 at 0:30









                Mark FischlerMark Fischler

                33.8k12552




                33.8k12552






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091584%2flimit-2-frac-1n-nnas-n-rightarrow-infty%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith