Limit: $2^{frac{(-1)^n - n}{n}}$as $n rightarrow infty$
$begingroup$
How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?
I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?
I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?
calculus sequences-and-series
$endgroup$
add a comment |
$begingroup$
How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?
I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?
calculus sequences-and-series
$endgroup$
How can I calculate this lim $2^{ frac{( - 1 ) ^n - n}{n}}$as $n rightarrow infty$ ?
I know that the final answer is 1/2. but I do not know how.could anyone explain this for me please?
calculus sequences-and-series
calculus sequences-and-series
edited Jan 29 at 0:56
Key Flex
8,56761233
8,56761233
asked Jan 29 at 0:20
hopefullyhopefully
277214
277214
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.
$endgroup$
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
add a comment |
$begingroup$
Start by pulling the expression apart:
$$
2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
$$
Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
$$2^{frac{(-1)^n}{n}} 2^{frac1n}
$$
So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
$$
frac12 cdot 1 = frac12
$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091584%2flimit-2-frac-1n-nnas-n-rightarrow-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.
$endgroup$
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
add a comment |
$begingroup$
Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.
$endgroup$
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
add a comment |
$begingroup$
Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.
$endgroup$
Hint: $$lim 2^{frac{(-1)^n-n}{n}} = lim 2^{frac{(-1)^n}{n}-1}. $$
One more thing: notice that when $n$ is even the exponent becomes $frac{1}{n}$, whereas if $n$ is odd you get $-frac{1}{n}$. In any case, $lim pm frac{1}{n} = 0$.
edited Jan 29 at 0:36
answered Jan 29 at 0:21


GibbsGibbs
5,4483927
5,4483927
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
add a comment |
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
$begingroup$
Why the down vote?
$endgroup$
– Chris Leary
Jan 29 at 0:24
add a comment |
$begingroup$
Start by pulling the expression apart:
$$
2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
$$
Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
$$2^{frac{(-1)^n}{n}} 2^{frac1n}
$$
So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
$$
frac12 cdot 1 = frac12
$$
$endgroup$
add a comment |
$begingroup$
Start by pulling the expression apart:
$$
2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
$$
Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
$$2^{frac{(-1)^n}{n}} 2^{frac1n}
$$
So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
$$
frac12 cdot 1 = frac12
$$
$endgroup$
add a comment |
$begingroup$
Start by pulling the expression apart:
$$
2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
$$
Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
$$2^{frac{(-1)^n}{n}} 2^{frac1n}
$$
So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
$$
frac12 cdot 1 = frac12
$$
$endgroup$
Start by pulling the expression apart:
$$
2^{frac{-n+(-1)^n}{n}} = 2^{-1+frac{(-1)^n}{n}}=2^{-1}2^{frac{(-1)^n}{n}}=frac122^{frac{(-1)^n}{n}}
$$
Now for all $n>1$, $frac{(-1)^n}{n} leq frac1n$ so
$$2^{frac{(-1)^n}{n}} 2^{frac1n}
$$
So for sufficiently large $n$, $2^{frac{(-1)^n}{n}}$ is arbitrarily close to $2^0 = 1$ so the limit you want is
$$
frac12 cdot 1 = frac12
$$
edited Jan 29 at 0:41
Key Flex
8,56761233
8,56761233
answered Jan 29 at 0:30
Mark FischlerMark Fischler
33.8k12552
33.8k12552
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091584%2flimit-2-frac-1n-nnas-n-rightarrow-infty%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown