Proving that $limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$












8












$begingroup$


I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.



Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.



Any insight ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
    $endgroup$
    – i707107
    Jan 29 at 7:49


















8












$begingroup$


I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.



Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.



Any insight ?










share|cite|improve this question











$endgroup$












  • $begingroup$
    A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
    $endgroup$
    – i707107
    Jan 29 at 7:49
















8












8








8


4



$begingroup$


I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.



Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.



Any insight ?










share|cite|improve this question











$endgroup$




I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.



Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.



Any insight ?







real-analysis calculus sequences-and-series limits






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 29 at 3:17







Harmonic Sun

















asked Jan 29 at 3:03









Harmonic SunHarmonic Sun

71210




71210












  • $begingroup$
    A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
    $endgroup$
    – i707107
    Jan 29 at 7:49




















  • $begingroup$
    A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
    $endgroup$
    – i707107
    Jan 29 at 7:49


















$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49






$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49












1 Answer
1






active

oldest

votes


















6












$begingroup$

Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$
where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$
since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you, great answer !
    $endgroup$
    – Harmonic Sun
    Jan 29 at 12:00










  • $begingroup$
    Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
    $endgroup$
    – Harmonic Sun
    Jan 29 at 13:30










  • $begingroup$
    @HarmonicSun Thank you for information :) I've left my answer to your new question !
    $endgroup$
    – Song
    Jan 29 at 13:43














Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091682%2fproving-that-lim-limits-x-to-1-frac1-ln1-x-sum-limits-n-0-inft%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$
where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$
since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you, great answer !
    $endgroup$
    – Harmonic Sun
    Jan 29 at 12:00










  • $begingroup$
    Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
    $endgroup$
    – Harmonic Sun
    Jan 29 at 13:30










  • $begingroup$
    @HarmonicSun Thank you for information :) I've left my answer to your new question !
    $endgroup$
    – Song
    Jan 29 at 13:43


















6












$begingroup$

Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$
where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$
since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thank you, great answer !
    $endgroup$
    – Harmonic Sun
    Jan 29 at 12:00










  • $begingroup$
    Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
    $endgroup$
    – Harmonic Sun
    Jan 29 at 13:30










  • $begingroup$
    @HarmonicSun Thank you for information :) I've left my answer to your new question !
    $endgroup$
    – Song
    Jan 29 at 13:43
















6












6








6





$begingroup$

Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$
where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$
since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$






share|cite|improve this answer











$endgroup$



Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$
where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$
since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Jan 29 at 5:22

























answered Jan 29 at 5:16









SongSong

18.5k21651




18.5k21651












  • $begingroup$
    Thank you, great answer !
    $endgroup$
    – Harmonic Sun
    Jan 29 at 12:00










  • $begingroup$
    Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
    $endgroup$
    – Harmonic Sun
    Jan 29 at 13:30










  • $begingroup$
    @HarmonicSun Thank you for information :) I've left my answer to your new question !
    $endgroup$
    – Song
    Jan 29 at 13:43




















  • $begingroup$
    Thank you, great answer !
    $endgroup$
    – Harmonic Sun
    Jan 29 at 12:00










  • $begingroup$
    Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
    $endgroup$
    – Harmonic Sun
    Jan 29 at 13:30










  • $begingroup$
    @HarmonicSun Thank you for information :) I've left my answer to your new question !
    $endgroup$
    – Song
    Jan 29 at 13:43


















$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00




$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00












$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30




$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30












$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43






$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43




















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091682%2fproving-that-lim-limits-x-to-1-frac1-ln1-x-sum-limits-n-0-inft%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

MongoDB - Not Authorized To Execute Command

How to fix TextFormField cause rebuild widget in Flutter

in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith