Proving that $limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$
$begingroup$
I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.
Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.
Any insight ?
real-analysis calculus sequences-and-series limits
$endgroup$
add a comment |
$begingroup$
I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.
Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.
Any insight ?
real-analysis calculus sequences-and-series limits
$endgroup$
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49
add a comment |
$begingroup$
I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.
Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.
Any insight ?
real-analysis calculus sequences-and-series limits
$endgroup$
I conjecture that :
$$forall binmathbb{N}setminuslbrace0,1rbrace,limlimits_{xto 1^{-}}frac{1}{ln(1-x)}sumlimits_{n=0}^{infty}x^{b^n}=-frac{1}{ln(b)}$$
Which is well verified through numerical simulations.
Maybe I'm missing something obvious here, but I have absolutely no idea as of how to prove it. Uniform convergence is of course of no help here, the series $sumlimits_{n=0}^{infty}1$ being trivially divergent.
Any insight ?
real-analysis calculus sequences-and-series limits
real-analysis calculus sequences-and-series limits
edited Jan 29 at 3:17
Harmonic Sun
asked Jan 29 at 3:03


Harmonic SunHarmonic Sun
71210
71210
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49
add a comment |
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$ where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$ since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$
$endgroup$
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091682%2fproving-that-lim-limits-x-to-1-frac1-ln1-x-sum-limits-n-0-inft%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$ where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$ since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$
$endgroup$
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
add a comment |
$begingroup$
Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$ where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$ since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$
$endgroup$
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
add a comment |
$begingroup$
Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$ where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$ since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$
$endgroup$
Let $x = e^{-lambda}$, $lambda to 0^+$. We find that
$$
sum_{nge 0}x^{b^n} =sum_{nge 0}e^{-b^n lambda}=int_0^infty e^{-b^t lambda} mathrm{d}t + varepsilon_lambda,
$$ where $|varepsilon_lambda |le 1$ for all $lambda>0$, i.e. $varepsilon_lambda =O(1)$. By making substitution $b^tlambda =u$,
$$begin{eqnarray}
sum_{nge 0}e^{-b^n lambda}&=&frac{1}{ln b}int_lambda^infty e^{-u}frac{mathrm{d}u}{u}+O(1)\&=&frac{1}{ln b}int_lambda^1 frac{mathrm{d}u}{u}+frac{1}{ln b}int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}u+O(1)\
&=&-frac{ln lambda}{ln b}+O(1),
end{eqnarray}$$ since $$left|int_lambda^infty frac{e^{-u}-1_{{ule 1}}}{u}mathrm{d}uright|leint_0^infty frac{|e^{-u}-1_{{ule 1}}|}{u}mathrm{d}u<infty.$$ Finally, we have for all $b>1$,
$$begin{eqnarray}
lim_{xto 1^-} frac{1}{ln(1-x)}sumlimits_{nge 0}x^{b^n}&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda+O(1)}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{ln lambda}{ln(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{1/lambda}{e^{-lambda}/(1-e^{-lambda})}\&=&-frac{1}{ln b}lim_{lambda to 0^+}frac{e^lambda(1-e^{-lambda})}{lambda}=-frac{1}{ln b}.
end{eqnarray}$$
edited Jan 29 at 5:22
answered Jan 29 at 5:16


SongSong
18.5k21651
18.5k21651
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
add a comment |
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Thank you, great answer !
$endgroup$
– Harmonic Sun
Jan 29 at 12:00
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
Since you're the one who got the answer, you might be interested by my newest question here, which tries to refine this result even more.
$endgroup$
– Harmonic Sun
Jan 29 at 13:30
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
$begingroup$
@HarmonicSun Thank you for information :) I've left my answer to your new question !
$endgroup$
– Song
Jan 29 at 13:43
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091682%2fproving-that-lim-limits-x-to-1-frac1-ln1-x-sum-limits-n-0-inft%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
A stronger result is also true. $sum_{n=0}^{infty} x^{b^n}+frac{ln(1-x)}{ln b}$ is boundedly oscillating as $xrightarrow 1-$.
$endgroup$
– i707107
Jan 29 at 7:49