Quadratic second-order differential equation involving tan x
$begingroup$
Is there a way to exactly solve the following differential equation:
$$left(frac{dx}{dt}right)^2 = -tan x frac{d^2x}{dt^2} $$
ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Is there a way to exactly solve the following differential equation:
$$left(frac{dx}{dt}right)^2 = -tan x frac{d^2x}{dt^2} $$
ordinary-differential-equations
$endgroup$
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42
add a comment |
$begingroup$
Is there a way to exactly solve the following differential equation:
$$left(frac{dx}{dt}right)^2 = -tan x frac{d^2x}{dt^2} $$
ordinary-differential-equations
$endgroup$
Is there a way to exactly solve the following differential equation:
$$left(frac{dx}{dt}right)^2 = -tan x frac{d^2x}{dt^2} $$
ordinary-differential-equations
ordinary-differential-equations
edited Jan 31 at 11:14
Dylan
14.2k31127
14.2k31127
asked Jan 29 at 1:00
user153388user153388
514
514
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42
add a comment |
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Hint
The equation being
$$(x')^2+tan(x) x''=0$$ make
$$cos(x)=z implies x=cos ^{-1}(z)implies x'=-frac{z'}{sqrt{1-z^2}}implies x''=frac{left(z^2-1right) z''-(z')^2}{left(1-z^2right)^{3/2}}$$ as well as $tan(x)=frac{sqrt{1-z^2}}{z}$.
You should get something very simple.
$endgroup$
add a comment |
$begingroup$
Rewrite
$$ -(cot x)x' = frac{x''}{x'} $$
Integrate both sides
$$ ln(x') = -ln(sin x) + C $$
$$ implies x' = frac{A}{sin x} $$
Separate and integrate again
$$ (sin x)x' = A $$
$$ cos x = B-At $$
Final solution
$$ x(t) = arccos(B-At) $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091611%2fquadratic-second-order-differential-equation-involving-tan-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Hint
The equation being
$$(x')^2+tan(x) x''=0$$ make
$$cos(x)=z implies x=cos ^{-1}(z)implies x'=-frac{z'}{sqrt{1-z^2}}implies x''=frac{left(z^2-1right) z''-(z')^2}{left(1-z^2right)^{3/2}}$$ as well as $tan(x)=frac{sqrt{1-z^2}}{z}$.
You should get something very simple.
$endgroup$
add a comment |
$begingroup$
Hint
The equation being
$$(x')^2+tan(x) x''=0$$ make
$$cos(x)=z implies x=cos ^{-1}(z)implies x'=-frac{z'}{sqrt{1-z^2}}implies x''=frac{left(z^2-1right) z''-(z')^2}{left(1-z^2right)^{3/2}}$$ as well as $tan(x)=frac{sqrt{1-z^2}}{z}$.
You should get something very simple.
$endgroup$
add a comment |
$begingroup$
Hint
The equation being
$$(x')^2+tan(x) x''=0$$ make
$$cos(x)=z implies x=cos ^{-1}(z)implies x'=-frac{z'}{sqrt{1-z^2}}implies x''=frac{left(z^2-1right) z''-(z')^2}{left(1-z^2right)^{3/2}}$$ as well as $tan(x)=frac{sqrt{1-z^2}}{z}$.
You should get something very simple.
$endgroup$
Hint
The equation being
$$(x')^2+tan(x) x''=0$$ make
$$cos(x)=z implies x=cos ^{-1}(z)implies x'=-frac{z'}{sqrt{1-z^2}}implies x''=frac{left(z^2-1right) z''-(z')^2}{left(1-z^2right)^{3/2}}$$ as well as $tan(x)=frac{sqrt{1-z^2}}{z}$.
You should get something very simple.
answered Jan 29 at 3:02
Claude LeiboviciClaude Leibovici
125k1158135
125k1158135
add a comment |
add a comment |
$begingroup$
Rewrite
$$ -(cot x)x' = frac{x''}{x'} $$
Integrate both sides
$$ ln(x') = -ln(sin x) + C $$
$$ implies x' = frac{A}{sin x} $$
Separate and integrate again
$$ (sin x)x' = A $$
$$ cos x = B-At $$
Final solution
$$ x(t) = arccos(B-At) $$
$endgroup$
add a comment |
$begingroup$
Rewrite
$$ -(cot x)x' = frac{x''}{x'} $$
Integrate both sides
$$ ln(x') = -ln(sin x) + C $$
$$ implies x' = frac{A}{sin x} $$
Separate and integrate again
$$ (sin x)x' = A $$
$$ cos x = B-At $$
Final solution
$$ x(t) = arccos(B-At) $$
$endgroup$
add a comment |
$begingroup$
Rewrite
$$ -(cot x)x' = frac{x''}{x'} $$
Integrate both sides
$$ ln(x') = -ln(sin x) + C $$
$$ implies x' = frac{A}{sin x} $$
Separate and integrate again
$$ (sin x)x' = A $$
$$ cos x = B-At $$
Final solution
$$ x(t) = arccos(B-At) $$
$endgroup$
Rewrite
$$ -(cot x)x' = frac{x''}{x'} $$
Integrate both sides
$$ ln(x') = -ln(sin x) + C $$
$$ implies x' = frac{A}{sin x} $$
Separate and integrate again
$$ (sin x)x' = A $$
$$ cos x = B-At $$
Final solution
$$ x(t) = arccos(B-At) $$
answered Jan 31 at 11:19
DylanDylan
14.2k31127
14.2k31127
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091611%2fquadratic-second-order-differential-equation-involving-tan-x%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The equation would be easier to read if you used MathJax
$endgroup$
– J. W. Tanner
Jan 29 at 1:42