Find the general solution to the equation $y^{''}-6y^{'}+8y=5xe^{2x}+2e^{4x}sin x$
$begingroup$
Solving the homogeneous equation
$$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$
General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.
How to find one particular solution to the non-homogeneous equation?
calculus ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Solving the homogeneous equation
$$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$
General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.
How to find one particular solution to the non-homogeneous equation?
calculus ordinary-differential-equations
$endgroup$
add a comment |
$begingroup$
Solving the homogeneous equation
$$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$
General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.
How to find one particular solution to the non-homogeneous equation?
calculus ordinary-differential-equations
$endgroup$
Solving the homogeneous equation
$$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$
General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.
How to find one particular solution to the non-homogeneous equation?
calculus ordinary-differential-equations
calculus ordinary-differential-equations
asked Jan 19 '16 at 22:36
user300048user300048
618412
618412
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
With superposition of solutions:
Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.
For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.
As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.
$endgroup$
add a comment |
$begingroup$
Particular solution we find with method of undermined coefficients
$$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
We get
$${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
$$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
$$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
$$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
-frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$
General solution is
$$y=c_1e^{2x}+c_2e^{4x}+y_p$$
$endgroup$
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1618789%2ffind-the-general-solution-to-the-equation-y-6y8y-5xe2x2e4x-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
With superposition of solutions:
Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.
For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.
As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.
$endgroup$
add a comment |
$begingroup$
With superposition of solutions:
Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.
For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.
As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.
$endgroup$
add a comment |
$begingroup$
With superposition of solutions:
Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.
For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.
As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.
$endgroup$
With superposition of solutions:
Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.
For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.
As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.
answered Jan 19 '16 at 22:51
BernardBernard
123k741117
123k741117
add a comment |
add a comment |
$begingroup$
Particular solution we find with method of undermined coefficients
$$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
We get
$${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
$$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
$$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
$$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
-frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$
General solution is
$$y=c_1e^{2x}+c_2e^{4x}+y_p$$
$endgroup$
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
add a comment |
$begingroup$
Particular solution we find with method of undermined coefficients
$$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
We get
$${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
$$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
$$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
$$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
-frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$
General solution is
$$y=c_1e^{2x}+c_2e^{4x}+y_p$$
$endgroup$
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
add a comment |
$begingroup$
Particular solution we find with method of undermined coefficients
$$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
We get
$${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
$$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
$$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
$$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
-frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$
General solution is
$$y=c_1e^{2x}+c_2e^{4x}+y_p$$
$endgroup$
Particular solution we find with method of undermined coefficients
$$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
We get
$${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
$$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
$$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
$$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
-frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$
General solution is
$$y=c_1e^{2x}+c_2e^{4x}+y_p$$
answered Jan 27 at 7:46


Aleksas DomarkasAleksas Domarkas
1,54817
1,54817
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
add a comment |
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
$begingroup$
+1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
$endgroup$
– farruhota
Jan 27 at 10:03
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1618789%2ffind-the-general-solution-to-the-equation-y-6y8y-5xe2x2e4x-sin%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown