Find the general solution to the equation $y^{''}-6y^{'}+8y=5xe^{2x}+2e^{4x}sin x$












0












$begingroup$


Solving the homogeneous equation
$$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$



General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.



How to find one particular solution to the non-homogeneous equation?










share|cite|improve this question









$endgroup$

















    0












    $begingroup$


    Solving the homogeneous equation
    $$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$



    General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.



    How to find one particular solution to the non-homogeneous equation?










    share|cite|improve this question









    $endgroup$















      0












      0








      0





      $begingroup$


      Solving the homogeneous equation
      $$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$



      General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.



      How to find one particular solution to the non-homogeneous equation?










      share|cite|improve this question









      $endgroup$




      Solving the homogeneous equation
      $$y^{''}-6y^{'}+8=0Rightarrow lambda^2-6lambda+8=0Rightarrow lambda_1=2,lambda_2=4$$



      General solution to this homogeneous equation is $y_h=c_1e^{2x}+c_2e^{4x}$.



      How to find one particular solution to the non-homogeneous equation?







      calculus ordinary-differential-equations






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Jan 19 '16 at 22:36









      user300048user300048

      618412




      618412






















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          With superposition of solutions:



          Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.



          For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.



          As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.






          share|cite|improve this answer









          $endgroup$





















            1












            $begingroup$

            Particular solution we find with method of undermined coefficients
            $$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
            We get
            $${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
            $$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
            $$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
            $$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
            -frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$

            General solution is
            $$y=c_1e^{2x}+c_2e^{4x}+y_p$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
              $endgroup$
              – farruhota
              Jan 27 at 10:03











            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1618789%2ffind-the-general-solution-to-the-equation-y-6y8y-5xe2x2e4x-sin%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            With superposition of solutions:



            Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.



            For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.



            As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.






            share|cite|improve this answer









            $endgroup$


















              2












              $begingroup$

              With superposition of solutions:



              Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.



              For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.



              As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.






              share|cite|improve this answer









              $endgroup$
















                2












                2








                2





                $begingroup$

                With superposition of solutions:



                Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.



                For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.



                As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.






                share|cite|improve this answer









                $endgroup$



                With superposition of solutions:



                Find a particular solution $y_0(x)$ for $ y''-6y'+8=xmathrm e^{2x} $, a particular solution $ z_0(x) $ for $y''-6y'+8=xmathrm e^{4x}sin x$. A particular solution for $y''-6y'+8=5xmathrm e^{2x}+2mathrm e^{4x}sin x$ will be $5y_0(x)+2z_0(x)$.



                For a right-hand side of the form $p(x)mathrm e^{2x}$, $p(x)$ a polynomial of degree $d$, as $mathrm e^{2x}$ is a solution of the homogeneous equation, $y_0(x)$ will have the form $xq(x)mathrm e^{2x}$, with $deg q=d$.



                As for the right-hand side $mathrm e^{4x}sin x$, it is the imaginary part of $mathrm e^{(4+mathrm i)x}$, which leads to a particular solution of the form $Kmathrm e^{(4+mathrm i)x}$. Then take the imaginary part of this particular solution.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Jan 19 '16 at 22:51









                BernardBernard

                123k741117




                123k741117























                    1












                    $begingroup$

                    Particular solution we find with method of undermined coefficients
                    $$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
                    We get
                    $${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
                    $$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
                    $$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
                    $$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
                    -frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$

                    General solution is
                    $$y=c_1e^{2x}+c_2e^{4x}+y_p$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                      $endgroup$
                      – farruhota
                      Jan 27 at 10:03
















                    1












                    $begingroup$

                    Particular solution we find with method of undermined coefficients
                    $$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
                    We get
                    $${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
                    $$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
                    $$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
                    $$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
                    -frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$

                    General solution is
                    $$y=c_1e^{2x}+c_2e^{4x}+y_p$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                      $endgroup$
                      – farruhota
                      Jan 27 at 10:03














                    1












                    1








                    1





                    $begingroup$

                    Particular solution we find with method of undermined coefficients
                    $$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
                    We get
                    $${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
                    $$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
                    $$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
                    $$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
                    -frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$

                    General solution is
                    $$y=c_1e^{2x}+c_2e^{4x}+y_p$$






                    share|cite|improve this answer









                    $endgroup$



                    Particular solution we find with method of undermined coefficients
                    $$y_p={{e}^{4 x}}, left( A sin{(x)}+B cos{(x)}right) +{{e}^{2 x}} x, left( C x+Dright) $$
                    We get
                    $${{e}^{4 x}}, left( -2 B sin{(x)}-A sin{(x)}-B cos{(x)}+2 A cos{(x)}right) +{{e}^{2 x}}, left( -4 C x-2 D+2 Cright)\ =2 {{e}^{4 x}} sin{(x)}+5 {{e}^{2 x}} x,$$
                    $$-2 B-A=2,quad 2 A-B=0,quad -4 C=5,quad 2 C-2 D=0,$$
                    $$A=-frac{2}{5},quad B=-frac{4}{5},quad C=-frac{5}{4},quad D=-frac{5}{4},$$
                    $$y_p={{e}^{4 x}}, left( -frac{2 sin{(x)}}{5}-frac{4 cos{(x)}}{5}right) +{{e}^{2 x}}, left( -frac{5 x}{4}-frac{5}{4}right) x\=
                    -frac{2 {{e}^{4 x}}, left( sin{(x)}+2 cos{(x)}right) }{5}-frac{5 {{e}^{2 x}} x, left( x+1right) }{4},$$

                    General solution is
                    $$y=c_1e^{2x}+c_2e^{4x}+y_p$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Jan 27 at 7:46









                    Aleksas DomarkasAleksas Domarkas

                    1,54817




                    1,54817












                    • $begingroup$
                      +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                      $endgroup$
                      – farruhota
                      Jan 27 at 10:03


















                    • $begingroup$
                      +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                      $endgroup$
                      – farruhota
                      Jan 27 at 10:03
















                    $begingroup$
                    +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                    $endgroup$
                    – farruhota
                    Jan 27 at 10:03




                    $begingroup$
                    +1 for the detailed calculations. However, you should not "undermine" the "undetermined" coefficients.
                    $endgroup$
                    – farruhota
                    Jan 27 at 10:03


















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1618789%2ffind-the-general-solution-to-the-equation-y-6y8y-5xe2x2e4x-sin%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    MongoDB - Not Authorized To Execute Command

                    How to fix TextFormField cause rebuild widget in Flutter

                    in spring boot 2.1 many test slices are not allowed anymore due to multiple @BootstrapWith